John L. Wang
John L. Wangは、1973年にロックフェラー大学でPh.D.の学位を取得した。1977年にミシガン州立大学生化学分子生物学部の教授陣に加わり、現在は名誉教授である。レクチンへの関心は長年にわたる。(a)植物レクチンであるコンカナバリンA(Con A)のアミノ酸配列とX線構造の決定に取り組んだ。リンパ球の細胞表面受容体の移動をCon Aにより阻害した解析によって、受容体と細胞質/細胞骨格の相互作用に関する早期のエビデンスの1つを得た。(b)自身の研究室では、根粒菌のブラディリゾビウム・ジャポニクム(Bradyrhizobium japonicum)がダイズ植物体の根に結合・接着して窒素固定共生に至る過程も研究していた。この解析が、根粒菌のダイズ細胞とのガラクトース特異的な結合は、ブラディリゾビウム・ジャポニクム細胞の一極に存在するレクチンによって仲介されるという発見につながった。(c)最後に、Wangらは、ガレクチン-3が細胞外コンパートメントと細胞内コンパートメントに二重局在する現象について報告している。細胞核内でガレクチン-3は、液-液相分離現象によって形成される膜のないオルガネラである核スペックルに、他のmRNA前駆体スプライシング因子と共局在していることを見出している。
Barondes, S.H., Castronovo, V., Cooper, D.N.W., Cummings, R.D., Drickamer, K., Feizi, T. et al. (1994) Galectins: a family of animal β-galctoside-binding lectins. Cell 76, 597-598.
Johannes, L., Jacob, R., and Leffler, H. (2018) Galectins at a glance. J. Cell Sci.131, jcs208884. https://doi:10.1242/jcs.208884
Hirabayashi, J. and Kasai, K. (1993) The family of metazoan metal-independent β-galactoside-binding lectins: structure, function, and molecular evolution. Glycobiology 3, 297–304.
Jia, S. and Wang, J.L. (1988) Carbohydrate binding protein 35. Complementary DNA sequence reveals homology with proteins of the heterogeneous nuclear RNP. J. Biol. Chem. 263, 6009-6011.
Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S.H., and Rini, J.M. (1998) X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-Å resolution. J. Biol. Chem. 273, 13047-13052.
Liu, D., Riggi, M., Lee, H.O., Currie, S.L., Goodsell, D.S., Iwasa, J. H. et al. (2023) Depicting a cellular space occupied by condensates. Mol. Biol. Cell 34:tp2, 1-9.
Martz, E. (2002) Protein explorer: easy yet powerful macromolecular visualization. Trends Biochem. Sci. 27, 107–109.
Lin, Y.-H., Qiu, D.-C., Chang, W.-H., Yeh, Y.-Q., Jeng, U.-S., Liu, F.-T. et al. (2017) The intrinsically disordered N-terminal domain of galectin-3 dynamically mediates multisite self-association of the protein through fuzzy interactions. J. Biol. Chem. 292, 17845-17856.
Chiu, Y.-P., Sun, Y.-C., Qiu, D.-C., Lin, Y.-H., Chen, Y.-Q., Kuo, J.-C. et al. (2020) Liquid-liquid phase separation and extracellular multivalent interactions in the tale of galectin-3, Nat. Commun. 11, 1229. https://doi.org/10.1038/s41467-020-15007-3.
Voss, P.G. and Wang, J.L. (2023) Liquid-liquid phase separation: galectin-3 in nuclear speckles and ribonucleoprotein complexes. Exp. Cell Res. 427, 113571. https://doi.org/10.1016/j.yexcr.2023.113571.
Mehul, B., Bawumia, S., Martin, S.R., and Hughes, R.C. (1994) Structure of baby hamster kidney carbohydrate-binding protein CBP30, an S-type animal lectin. J. Biol. Chem. 269, 18250-18259.
Birdsall, B., Feeney, J., Burdett, I.D.J., Bawumia, S., Barboni, E.A.M., and Hughes, R.C. (2001) NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes: evidence for interactions between the N- and C-terminal domains. Biochemistry 40, 4859-4866.
Agrwal, N., Sun, Q., Wang, S.-Y., and Wang, J.L. (1993) Carbohydrate binding protein 35. I. Properties of the recombinant polypeptide and the individuality of the domains. J. Biol. Chem. 268, 14932-14939.
Dyson, H.J. and Wright, P.E. (2005) Intrinsically unstructured proteins and their functions. Nature Rev: Mol. Cell Biol 6, 197-208.
Barboni, E.A.M., Bawumia, S., Henrick, K., and Hughes, R.C. (2000) Molecular modeling and mutagenesis studies of the N-terminal domains of galectin-3: evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding. Glycobiology 10, 1201-1208.
Berbís, M.A., André, S., Cañada, F.J., Pipkorn, R., Ippel, H., Mayo, K.H. et al. (2014) Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner. Biochem. Biophys. Res. Commun. 443, 126-131.
Ippel, H., Miller, M.C., Vertesy, S., Zheng, Y., Cañada, F.J., Suylen, D. et al. (2016) Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology 26, 888-903.
Ahmad, N., Gabius, H.-J., André, S., Kaltner, H., Sabesan, S., Roy, R. et al. (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 279, 10841-10847.
Nieminen, J., Kuno, A., Hirabayashi, J., and Sato, S. (2007) Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. J. Biol. Chem. 282, 1374-1383.
Fermino, M.L., Polli, C.D., Toledo, K.A., Liu, F.-T., Hsu, D.K., Roque-Barreira, M.C. et al. (2011) LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PLoS One 6, e26004. https://doi.org/10.1371/journal.pone.0026004
Halimi, H., Rigato, A., Byrne, D., Ferracci, G., Sebban-Kreuzer, C., ElAntak, L. et al. (2014) Glycan dependence of galectin-3 self-association properties. PLoS One 9, e111836. https://doi.org/10.1371/journal.pone.0111836
Roff, C.F. and Wang, J.L. (1983) Endogenous lectins from cultured cells. Isolation and characterization of carbohydrate-binding proteins from 3T3 fibroblasts. J. Biol. Chem. 258, 10657-10663.
Hsu, D.K., Zuberi, R.I., and Liu, F.-T. (1992) Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J. Biol. Chem. 267, 14167-14174.
Massa, S.M., Cooper, D.N.W., Leffler, H., and Barondes, S.H. (1993) L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry 32, 260-267.
Mey, A., Leffler, H., Hmama, Z., Normier, G., and Revillard, J.-P. (1996) The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites. J. Immunol. 156, 1572-1577.
Zhao, Z., Xu, X., Chen, H., Miller, M.C., He, Z., Gu, H., et al. (2021) Galectin-3 N-terminal tail prolines modulate cell activity and glycan-mediated oligomerization/phase separation, Proc. Natl. Acad. Sci. USA 118, e2021074118. https://doi.org/10.1073/pnas.2021074118
Sato, S. (2023) Why does galectin-3 have a unique intrinsically disordered region? “Raison d’être” for the disordered structure and liquid-liquid phase separation – Part 1. Glycoforum 26, A1. https://doi.org/10.32285/glycoforum.26A1
Sato, S. (2023) Why does galectin-3 have a unique intrinsically disordered region? “Raison d’être” for the disordered structure and liquid-liquid phase separation – Part 2. Glycoforum 26, A8. https://doi.org/10.32285/glycoforum.26A8
Bänfer, S., Schneider, D., Dewes, J., Strauss, M.T., Freibert, S.-A., Heimerl, T. et al. (2018) Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc. Natl. Acad. Sci. USA 115, E4396-E4405. https://doi.org/10.1073/pnas.1718921115
Menon R.P. and Hughes, R.C. (1999) Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. Eur. J. Biochem. 264, 569–576.
Chen, H.-Y., Fermin, A., Vardhana, S., Weng, I.-C., Lo, K.F.R., Chang, E.-Y. et al. (2009) Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc. Natl. Acad. Sci. USA 106, 14496-14501.
Jia, J., Claude-Taupin, A., Gu, Y.,Choi, S.W., Peter, R., Bissa, B. et al. (2020) Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev. Cell 52, 69-87.
Radulovic, M., Schink, K.O., Wenzel, E.M., Nähse, V., Bongiovanni, A., Lafont, F. et al. (2018) ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. 37, e99753. https://doi.org/10.15252/embj.201899753.
Fritsch, K., Mernberger, M., Nist, A., Stiewe, T., Brehm, A., and Jacob, R. (2016) Galectin-3 interacts with components of the nuclear ribonucleoprotein complex. BMC Cancer 16, 502-511.
Vyakarnam, A., Dagher, S.F., Wang, J.L., and Patterson, R.J. (1997) Evidence for a role for galectin-1 in pre-mRNA splicing. Mol. Cell. Biol. 17, 4730-4737.
Ilik, İ.A. and Aktaş, T. (2022) Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J. 289, 7234-7245.
Shin, Y. and Brangwynne, C.P. (2017) Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382. https://doi: 10.1126/science.aaf4382
Dagher, S.F., Wang, J.L., and Patterson, R.J. (1995) Identification of galectin-3 as a factor in pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 92, 1213-1217.
Haudek, K.C., Voss, P.G., Locascio, L.E., Wang, J.L., and Patterson, R.J. (2009) A mechanism for incorporation of galectin-3 into the spliceosome through its association with U1 snRNP. Biochemistry 48, 7705-7712.
Haudek, K.C., Voss, P.G., Wang, J.L., and Patterson, R.J. (2016) A 10S galectin-3-U1 snRNP complex assembles into active spliceosomes. Nucleic Acids Res. 44, 6391-6397.
Peng, R., Hawkins, I., Link,A., and Patton, J.G. (2006) The splicing factor PSF is part of a large complex that assembles in the absence of pre-mRNA and contains all five snRNPs. RNA Biol. 3, 69-76.
Hoskins, A.A., Friedman, L.J., Gallagher, S.S., Crawford, D.J., Anderson, E.G., Wombacher, E. et al. (2011) Ordered and dynamic assembly of single spliceosomes. Science 331, 1289–1295.
Gray, R.M., Davis, M.J., Ruby, K.M., Voss, P.G., Patterson, R.J., and Wang, J.L. (2008) Distinct effects on splicing of two monoclonal antibodies directed against the amino-terminal domain of galectin-3. Arch. Biochem. Biophys. 475, 100-108.
Park, J.W., Voss, P.G., Grabski, S., Wang, J.L., and Patterson, R.J. (2001) Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res. 29, 3595-3602.
Coppin, L., Vincent, A., Frénois, F., Duchêne, B., Lahdaoui, F., Stechly, L. et al. (2017) Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells. Sci. Rep. 7, 43927. https:// doi: 10.1038/srep43927
Protter, D.S.W. and R. Parker, R. (2016) Principles and properties of stress granules. Trends Cell Biol. 26, 668-679.
Lobsanov, Y.D., Gitt, M.A., Leffler, H., Barondes, S.H., and Rini, J.M. (1993) X-ray crystal structure of human dimeric S-Lac lectin, L14-II in complex with lactose at 2.9-Å resolution. J. Biol. Chem. 268, 27034-27038.
Liao, D.-I., Kapadia, G., Ahmed, H., Vasta, G.R., and Herzberg, O. (1994) Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein. Proc. Natl. Acad. Sci. USA 91, 1428-1432.
Bourne, Y., Bolgiano, B., Liao, D.-I., Strecker, G., Cantau, P., Herzberg, O. et al. (1994) Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides. Nat. Struct. Biol. 1, 863-870.
Kamitori, S. (2018) Three dimensional structures of galectins. Trends Glycosci. Glycotechnol. 30, SE41-SE50.
Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., and Poirier, F. (2002) Introduction to galectins. Glycoconj. J. 19, 433-440.
Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M. et al. (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232-254.
Salomonsson, E., Carlsson, M.C., Osla, V., Hendus-Altenburger, R., Kahl-Knutson, B., Öberg, C.T. et al. (2010) Mutational tuning of galectin-3 specificity and biological function. J. Biol. Chem. 285, 35079-35091.
Modenutti, C.P., Blanco Capurro, J.I., Di Lella, S., and Marti, M.A. (2019) The structural biology of galectin-ligand recognition: current advances in modeling tools, protein engineering, and inhibitor design. Front. Chem. 7, 823. https://doi.org/10.3389/fchem.2019.00823
Thurston, T.L.M., Wandel, M.P., von Muhlinen, N., Foeglein, Ȧ., and Randow, F. (2012) Galectin-8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418.
Kim, B.-W., Hong, S.B., Kim, J.H., Kwon, D.H., and Song, H.K. (2013) Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat. Commun. 4, 1613. DOI: 10.1038/ncomms2606
Li, S., Wandel, M.P., Li, F., Liu, Z., He, C., Wu, J. et al. (2013) Sterical hindrance promotes selectivity of the cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci. Signal. 6, ra9. DOI: 10.1126/scisignal.2003730
Chauhan, S., Kumar, S., Jain, A., Ponpuak, M., Mudd, M.H., Kimura, T. et al. (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell 39, 13-27.
Yang, R.-Y., Hill, P.N., Hsu, D.K., and Liu, F.-T. (1998) Role of the carboxyl-terminal lectin domain in self-association of galectin-3. Biochemistry 37, 4086-4092.
Kuklinski, S. and Probstmeier, R. (1998) Homophilic binding properties of galectin-3: involvement of the carbohydrate recognition domain. J. Neurochem. 70, 814-823.
Lepur, A., Salomonsson, E., Nilsson, U.J., and Leffler, H. (2012) Ligand induced galectin-3 protein self-association. J. Biol. Chem. 287, 21751-21756.
Leonidas, D.D., Vatzaki, E.H., Vorum, H., Celis, J.E., Madsen, P., and Acharya, K.R. (1998) Structural basis for the recognition of carbohydrates by human galectin-7. Biochemistry 37, 13930-13940.
Su, J., Gao, J., Si, Y., Cui, L, Song, C., Wang, Y. et al. (2018) Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding. Glycobiology 28, 159-168.
Stowell, S.R., Arthur, C.M., Slanina, K.A., Horton, J.R., Smith, D.F., and Cummings, R.D. (2008) Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J. Biol. Chem. 283, 20547-20559.
Miyanishi, N., Nishi, N., Abe, H., Kashio, Y., Shinonaga, R., Nakakita, S. et al. (2007) Carbohydrate-recognition domains of galectin-9 are involved in intermolecular interaction with galectin-9 itself and other members of the galectin family. Glycobiology 17, 423-432.
Bawumia, S., Barboni, E.A.M., Menon, R.P., and Hughes, R.C. (2003) Specificity of interactions of galectin-3 with Chrp, a cysteine- and histidine-rich cytoplasmic protein. Biochimie 85, 189-194.
Elad-Sfadia, G., Haklai, R., Balan, E., and Kloog, Y. (2004) Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279, 34922-34930.
Shalom-Feuerstein, R., Plowman, S.J., Rotblat, B., Ariotti, N., Tian, T., Hancock, J.F. et al. (2008) K-Ras nanoclustering is subverted by over-expression of the scaffold protein galectin-3. Cancer Res. 68, 6608-6616.
Paz, A., Haklai, R., Elad-Sfadia, G., Gallan, E., and Kloog, Y. (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486-7493.
Rotblat, B., Niv, H., André, S., Kaltner, H., Gabius, H.-J., and Kloog, Y. (2004) Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res. 64, 3112-3118.
Villeneuve, C., Baricault, L., Canelle, L., Barboule, N., Racca, C., Monsarrat, B. et al. (2011) Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells. Mol. Biol. Cell 22, 999-1013.
Yang, R.-Y., Hsu, D.K., and Liu, F.-T. (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc. Natl. Acad. Sci. USA 93, 6737-6742.
Kuwabara, I., Kuwabara, Y., Yang, R.-Y., Schuler, M., Green, D.R., Zuraw, B.L. et al. (2002) Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J. Biol. Chem. 277, 3487-3497.
Hotta, K., Funahashi, T., Matsukawa, Y., Takahashi, M., Nishizawa, H., Kishida, K. et al. (2001) Galectin-12, an adipose-expressed galectin-like molecule possessing apoptosis-inducing activity. J. Biol. Chem. 276, 34089-34097.
Yu, X., Siegel, R., and Roeder, R.G. (2006) Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation. J. Biol. Chem. 281, 15505-15516.
Voss, P.G., Gray, R.M., Dickey, S.W., Wang, W., Park, J.W., Kasai, K. et al. (2008) Dissociation of the carbohydrate-binding and splicing activities of galectin-1. Arch. Biochem. Biophys. 478, 18-25.
Rappsilber, J., Ryder, U., Lamond, A.I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245.
Hirabayashi, J. and Kasai, K. (1991) Effect of amino acid substitution by site-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa β-galactoside-binding lectin. J. Biol. Chem. 266, 23648-23653.
Voss, P.G., Haudek, K.C., Patterson, R.J., and Wang, J.L. (2012) Inhibition of cell-free splicing by saccharides that bind galectins and SR proteins. J. Carb. Chem. 31, 519-534.
Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., and Raz, A. (2004) Galectin-3, a novel binding partner of β-catenin. Cancer Res. 64, 6363-6767.
Itoh, K., Brott, B.K., Bae, G.U., Ratcliffe, M.J., and Sokol, S.Y. (2005) Nuclear localization is required for disheveled function in Wnt/β-catenin signaling. J. Biol. 4, 3. https://doi.org/10.1186/jbiol20
Davidson, P.J., Li, S.-Y., Lohse, A.G., Vandergaast, R., Verde, E., Pearson, A. et al. (2006) Transport of galectin-3 between the nucleus and cytoplasm. I. Conditions and signals for nuclear import. Glycobiology 16, 602-611.
Li, S.-Y., Davidson, P.J., Lin, N.Y., Patterson, R.J., Wang, J.L., and Arnoys, E.J. (2006) Transport of galectin-3 between the nucleus and cytoplasm. II. Identification of the signal for nuclear export. Glycobiology 16, 612-622.
Nakahara, S., Hogan, V., Inohara, H., and Raz, A. (2006) Importin-mediated nuclear translocation of galectin-3. J. Biol. Chem. 281, 39649-39659.
Davidson, P.J., Davis, M.J., Patterson, R.J., Ripoche, M.A., Poirier, F., and Wang, J.L. (2002) Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12, 329-337.
Eckardt, V., Miller, M.C., Blanchet, X., Duan, R., Leberzammer, J., Duchene, J. et al. (2020) Chemokines and galectins form heterodimers to modulate inflammation. EMBO Rep. 21, e47852.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
Akdel, M., Pires, D.E.V., Pardo, E.P., Jänes, J., Zalevsky, A.O., Mészáros, B. et al. (2022) A structural biology community assessment of AlphaFold2 applications. Nature Struct. Mol. Biol. 29, 1056-1067.