Dotan, N.; Altstock, R. T.; Schwarz, M.; Dukler, A., Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus 2006, 15 (7), 442-450.
Huflejt, M. E.; Vuskovic, M.; Vasiliu, D.; Xu, H.; Obukhova, P.; Shilova, N.; Tuzikov, A.; Galanina, O.; Arun, B.; Lu, K.; Bovin, N., Anti-carbohydrate antibodies of normal sera: Findings, surprises and challenges. Mol. Immunol. 2009, 46 (15), 3037-3049.
Bovin, N.; Obukhova, P.; Shilova, N.; Rapoport, E.; Popova, I.; Navakouski, M.; Unverzagt, C.; Vuskovic, M.; Huflejt, M., Repertoire of human natural anti-glycan immunoglobulins. Do we have auto-antibodies? Biochim. Biophys. Acta - Gen. Subj. 2012, 1820 (9), 1373-1382.
Kappler, K.; Hennet, T., Emergence and significance of carbohydrate-specific antibodies. Genes Immun. 2020, 21 (4), 224-239.
Landsteiner, K., Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Z. Bakteriol. 1900, 27, 357-362.
Galili, U.; Rachmilewitz, E. A.; Peleg, A.; Flechner, I., A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J. Exp. Med. 1984, 160 (5), 1519-1531.
Galili, U.; Shohet, S. B.; Kobrin, E.; Stults, C. L.; Macher, B. A., Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J. Biol. Chem. 1988, 263 (33), 17755-17762.
McMorrow, I. M.; Comrack, C. A.; Sachs, D. H.; DerSimonian, H., Heterogeneity of human anti-pig natural antibodies cross-reactive with the Gal(α1,3)Galactose epitope. Transplantation 1997, 64 (3), 501-510.
White-Scharf, M. E.; Rosenberg, L. T., Evidence that L-rhamnose is the antigenic determinant of hyporesponsiveness of BALB/c mice to Klebsiella pneumoniae type 47. Infect. Immun. 1978, 22 (1), 18-21.
Prakobphol, A.; Linzer, R.; Genco, R. J., Purification and characterization of a rhamnose-containing cell wall antigen of Streptococcus mutans B13 (serotype d). Infect. Immun. 1980, 27 (1), 150-157.
Chen, W.; Gu, L.; Zhang, W.; Motari, E.; Cai, L.; Styslinger, T. J.; Wang, P. G., L-rhamnose antigen: A promising alternative to α-gal for cancer immunotherapies. ACS Chem. Biol. 2011, 6 (2), 185-191.
Zhang, A. X.; Murelli, R. P.; Barinka, C.; Michel, J.; Cocleaza, A.; Jorgensen, W. L.; Lubkowski, J.; Spiegel, D. A., A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc. 2010, 132 (36), 12711-12716.
McEnaney, P. J.; Parker, C. G.; Zhang, A. X.; Spiegel, D. A., Antibody-recruiting molecules: An emerging paradigm for engaging immune function in treating human disease. ACS Chem. Biol. 2012, 7 (7), 1139-1151.
Chari, R. V. J.; Miller, M. L.; Widdison, W. C., Antibody–drug conjugates: An emerging concept in cancer therapy. Angew. Chem. Int. Ed. 2014, 53 (15), 3796-3827.
Tsutsui, M.; Sianturi, J.; Masui, S.; Tokunaga, K.; Manabe, Y.; Fukase, K., Efficient synthesis of antigenic trisaccharides containing N-acetylglucosamine: Protection of NHAc as NAc2. Eur. J. Org. Chem. 2020, 2020 (12), 1802-1810.
Tanaka, K.; Siwu, E. R. O.; Minami, K.; Hasegawa, K.; Nozaki, S.; Kanayama, Y.; Koyama, K.; Chen, W. C.; Paulson, J. C.; Watanabe, Y.; Fukase, K., Noninvasive imaging of dendrimer-type N-glycan clusters: In vivo dynamics dependence on oligosaccharide structure. Angew. Chem. Int. Ed. 2010, 49 (44), 8195-8200.
Farabi, K.; Manabe, Y.; Ichikawa, H.; Miyake, S.; Tsutsui, M.; Kabayama, K.; Yamaji, T.; Tanaka, K.; Hung, S.-C.; Fukase, K., Concise and reliable syntheses of glycodendrimers via self-activating click chemistry: A robust strategy for mimicking multivalent glycan–pathogen interactions. J. Org. Chem. 2020, 85 (24), 16014-16023.
Manabe, Y.; Tsutsui, M.; Hirao, K.; Kobayashi, R.; Inaba, H.; Matsuura, K.; Yoshidome, D.; Kabayama, K.; Fukase, K., Mechanistic studies for the rational design of multivalent glycodendrimers. Chem. Eur. J. 2022, 28 (61), e202201848.
Prescher, J. A.; Dube, D. H.; Bertozzi, C. R., Chemical remodelling of cell surfaces in living animals. Nature 2004, 430 (7002), 873-877.
Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R., In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008, 320 (5876), 664-667.
Wang, H.; Mooney, D. J., Metabolic glycan labelling for cancer-targeted therapy. Nat. Chem. 2020, 12 (12), 1102-1114.
Milawati, H.; Manabe, Y.; Matsumoto, T.; Tsutsui, M.; Ueda, Y.; Miura, A.; Kabayama, K.; Fukase, K., Practical antibody recruiting by metabolic labeling with caged glycans. Angew. Chem. Int. Ed. 2023, 62 (25), e202303750.
Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified staudingerfeaction. Science 2000, 287 (5460), 2007-2010.
Saxon, E.; Luchansky, S. J.; Hang, H. C.; Yu, C.; Lee, S. C.; Bertozzi, C. R., Investigating cellular metabolism of synthetic azidosugars with the staudinger ligation. J. Am. Chem. Soc. 2002, 124 (50), 14893-14902.
Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A strain-promoted [3 + 2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126 (46), 15046-15047.
Debets, M. F.; van Berkel, S. S.; Schoffelen, S.; Rutjes, F. P. J. T.; van Hest, J. C. M.; van Delft, F. L., Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. Chem. Commun. 2010, 46 (1), 97-99.
Li, S.; Yu, B.; Wang, J.; Zheng, Y.; Zhang, H.; Walker, M. J.; Yuan, Z.; Zhu, H.; Zhang, J.; Wang, P. G.; Wang, B., Biomarker-basedmetabolic labeling for redirected and enhanced immune response. ACS Chem. Biol. 2018, 13 (6), 1686-1694.
Uvyn, A.; De Coen, R.; De Wever, O.; Deswarte, K.; Lambrecht, B. N.; De Geest, B. G., Cell surface clicking of antibody-recruiting polymers to metabolically azide-labeled cancer cells. Chem. Commun. 2019, 55 (73), 10952-10955.
Goyard, D.; Diriwari, P. I.; Berthet, N., Metabolic labelling of cancer cells with glycodendrimers stimulate immune-mediated cytotoxicity. RSC Med. Chem. 2022, 13 (1), 72-78.
Dzigba, P.; Rylski, A. K.; Angera, I. J.; Banahene, N.; Kavunja, H. W.; Greenlee-Wacker, M. C.; Swarts, B. M., Immune targeting of mycobacteria through cell surface glycan engineering. ACS Chem. Biol. 2023, 18 (7), 1548-1556.
Ellis-Davies, G. C. R., Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods 2007, 4 (8), 619-628.
LaTemple, D. C.; Henion, T. R.; Anaraki, F.; Galili, U., Synthesis of alpha-galactosyl epitopes by recombinant alpha1,3galactosyl transferase for opsonization of human tumor cell vaccines by anti-galactose. Cancer Res. 1996, 56 (13), 3069-3074.
LaTemple, D. C.; Abrams, J. T.; Zhang, S. Y.; Galili, U., Increased immunogenicity of tumor vaccines complexed with anti-Gal: Studies in knockout mice for alpha1,3galactosyltransferase. Cancer Res. 1999, 59 (14), 3417-3423.
Rossi, G. R.; Mautino, M. R.; Unfer, R. C.; Seregina, T. M.; Vahanian, N.; Link, C. J., Effective treatment of preexisting melanoma with whole cell vaccines expressing α(1,3)-galactosyl epitopes. Cancer Res. 2005, 65 (22), 10555-10561.
Deguchi, T.; Tanemura, M.; Miyoshi, E.; Nagano, H.; Machida, T.; Ohmura, Y.; Kobayashi, S.; Marubashi, S.; Eguchi, H.; Takeda, Y.; Ito, T.; Mori, M.; Doki, Y.; Sawa, Y., Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express alpha-gal epitopes: A novel approach to immunotherapy in pancreatic cancer. Cancer Res. 2010, 70(13), 5259-5269.
Sarkar, S.; Lombardo, S. A.; Herner, D. N.; Talan, R. S.; Wall, K. A.; Sucheck, S. J., Synthesis of a single-molecule L-rhamnose-containing three-component vaccine and evaluation of antigenicity in the presence of anti-L-rhamnose antibodies. J. Am. Chem. Soc. 2010, 132 (48), 17236-17246.
Sarkar, S.; Salyer, A. C. D.; Wall, K. A.; Sucheck, S. J., Synthesis and immunological evaluation of a MUC1 glycopeptide incorporated into L-rhamnose displaying liposomes. Bioconjug. Chem. 2013, 24 (3), 363-375.
Rullo, A. F.; Fitzgerald, K. J.; Muthusamy, V.; Liu, M.; Yuan, C.; Huang, M.; Kim, M.; Cho, A. E.; Spiegel, D. A., Re-engineering the immune response to metastatic cancer: Antibody-recruiting small molecules targeting the urokinase receptor. Angew. Chem. Int. Ed. 2016, 55 (11), 3642-3646.
Liet, B.; Laigre, E.; Goyard, D.; Todaro, B.; Tiertant, C.; Boturyn, D.; Berthet, N.; Renaudet, O., Multifunctional glycoconjugates for recruiting natural antibodies against cancer cells. Chem. Eur. J. 2019, 25 (68), 15508-15515.
Uvyn, A.; De Coen, R.; Gruijs, M.; Tuk, C. W.; De Vrieze, J.; van Egmond, M.; De Geest, B. G., Efficient innate immune killing of cancer cells triggered by cell-surface anchoring of multivalent antibody-recruiting polymers. Angew. Chem. Int. Ed. 2019, 58 (37), 12988-12993.
De Coen, R.; Nuhn, L.; Perera, C.; Arista-Romero, M.; Risseeuw, M. D. P.; Freyn, A.; Nachbagauer, R.; Albertazzi, L.; Van Calenbergh, S.; Spiegel, D. A.; Peterson, B. R.; De Geest, B. G., Synthetic rhamnose glycopolymer cell-surface receptor for endogenous antibody recruitment. Biomacromolecules 2020, 21 (2), 793-802.
Mu, W.; Chen, Y.; Zhong, Z.; Louage, B.; Lauwers, H.; Devoogdt, N.; Haustraete, J.; De Geest, B. G., HER2 nanobody-poly(rhamnose) conjugates efficiently recruit anti-rhamnose antibodies from serum to the surface of HER2-expressing cells. Chem. Mater. 2024, 36 (20), 10113-10124.
Ou, C.; Prabhu, S. K.; Zhang, X.; Zong, G.; Yang, Q.; Wang, L.-X., Synthetic antibody-rhamnose cluster conjugates show potent complement-dependent cell killing by recruiting natural antibodies. Chem. Eur. J. 2022, 28 (16), e202200146.