T. Urashima, J. Hirabayashi, S. Sato, A. Kobata, Human Milk Oligosaccharides as Essential Tools for Basic and Application Studies on Galectins, Trends Glycosci. Glycotechnol. 2018, 30, SE51-SE65. https://doi.org/10.4052/tigg.1734.1SE
S. Fushinobu, Unique Sugar Metabolic Pathways of Bifidobacteria, Biosci. Biotechnol. Biochem. 2010, 74, 2374-2384. https://doi.org/10.1271/bbb.100494A
A. Yamada, N. Shibuya, O. Kodama, T. Akatsuka, Induction of Phytoalexin Formation in Suspension-cultured Rice Cells by N-Acetyl-chitooligosaccharides, Biosci. Biotechnol. Biochem. 1993, 57, 405-409. https://doi.org/10.1271/bbb.57.405
H. Kaku, Y. Nishizawa, N. Ishii-Minami, C. Akimoto-Tomiyama, N. Dohmae, K. Takio, E. Minami, N. Shibuya, Plant Cells Recognize Chitin Fragments for Defense Signaling through a Plasma Membrane Receptor, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11086− 11091. https://doi.org/10.1073/pnas.0508882103
M. N. Fukuda, H. Sasaki, L. Lopez, M. Fukuda, Survival of Recombinant Erythropoietin in the Circulation: The Role of Carbohydrates, Blood 1989, 73, 84-89. https://doi.org/10.1182/blood.V73.1.84.84
オキサゾリンには、二重結合の位置の違いにより三種類の異性体が存在するが、2-オキサゾリンが最もよく知られている。“オキサゾリン”という名称は、“オキサ”という酸素を意味する接頭語、“アザ”という窒素を意味する接頭語、および“オール”という五員環を表す接尾語から構成されている。W. H. Powell, Revision of the Extended Hantzsch-Widman System of Nomenclature for Heteromonocycles, Pure & Appi. Chem.1983, 55, 409-416.https://doi.org/10.1351/pac198855020409
M. Kiso, L. Anderson, The Ferric Chloride-catalyzed Glycosylation of Alcohols by 2-Acylamido-2-deoxy-β-ᴅ-glucopyranose 1-Acetates, Carbohydr. Res. 1979, 72, C12-C14. https://doi.org/10.1016/S0008-6215(00)83962-2
F. Micheel, H. Köchling, Über die Reaktionen des ᴅ-Glucosamins, X. Darstellung von Glykosiden des ᴅ-Glucosamins mit Aliphatischen und
Aromatischen Alkoholen und mit Serin nach der Oxazolin-Methode, Chem. Ber.1958,
91, 673-676. https://doi.org/10.1002/cber.19580910334
S. E. Zurabyan, T. P. Volosyuk, A. J. Khorlin, Oxazoline Synthesis of 1,2-Trans-2-acetamido-2-deoxyglycosides, Carbohydr. Res. 1969, 9, 215-220. https://doi.org/10.1016/S0008-6215(00)82136-9
K. L. Matta, E. A. Johnson, J. J. Barlow, A Simple Method for the Synthesis of 2-Acetamido-2-deoxy-β-D-galactopyranosides, Carbohydr. Res. 1973, 26, 215-218. https://doi.org/10.1016/S0008-6215(00)85039-9
V. Srivastava, A Facile Synthesis of 2-Methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-ᴅ-glucopyrano)-[2,1-e]-2-oxazoline, Carbohydr. Res. 1982, 103, 286-292. https://doi.org/10.1016/S0008-6215(00)80691-6
S. Nakabayashi, C. D. Warren, R. W. Jeanloz, A New Procedure for the Preparation of Oligosaccharide Oxazolines, Carbohydr. Res. 1986, 150, C7-C10. https://doi.org/10.1016/0008-6215(86)80028-3
K. L. Matta, J. J. Barlow, Facile Synthesis of 2-Methyl-[4,6-di-O-acetyl-1,2-dideoxy-3-O-(2,3,4,6-tetra-O-acetyl-ᴅ-glycopyranosyl)-α-ᴅ-glucopyrano]-[2′,1′,4,5]- 2-oxazolines, Key Intermediates for the Synthesis of Oligosaccharides, Carbohydr. Res.1977, 53, 47-56. https://doi.org/10.1016/S0008-6215(00)85453-1
R. U. Lemieux, H. Driguez, Chemical Synthesis of 2-Acetamido-2-deoxy-4-O-(.alpha.-L-fucopyranosyl)-3-O-(.beta.-ᴅ-galactopyranosyl)-ᴅ-glucose.
Lewis a blood-group antigenic determinant, J. Am. Chem. Soc. 1975, 97, 4063-4069. https://doi.org/10.1021/ja00847a033
S. Shoda, R. Izumi, M. Suenaga, K. Saito, M. Fujita, A Facile Method for Synthesis of 1,2-Oxazoline Derivative of N-Acetylglucosamine Promoted by Potassium Fluoride, Chem. Lett. 2002, 150-151. https://doi.org/10.1246/cl.2002.150
S. Shoda, R. Izumi, M. Fujita, Green Process in Glycotechnology, Bull. Chem. Soc. Jpn. 2003, 76, 1-13. https://doi.org/10.1246/bcsj.76.1
K. Toshima, Miscellaneous Glycosyl Donors, In Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; A. V.
Demchenko, Ed. WEILY-VCH, 2008, p. 457.
C. F. Crasto, G. B. Jones, A Practical Method for Preparation of β-Glycosides of N-Acetylglucosamine, Tetrahedron Lett. 2004, 45, 4891-4894, https://doi.org/10.1016/j.tetlet.2004.04.127
T. Ogawa, K. Beppu, S. Nakabayashi, Trimethylsilyl Trifluoromethanesulfonate as an Effective Catalyst for Glycoside Synthesis, Carbohydr. Res. 1981, 93, C6-C9. https://doi.org/10.1016/S0008-6215(00)80765-X
L. Lay, L. Panza, G. Russo, D. Colombo, F. Ronchetti, E. Adobati, S. Canevari, Oligosaccharides Related to Tumor-associate Antigens. Part 3†. Synthesis of the Propyl Glycosides of the Trisaccharide β-ᴅ-Galp-(1→3)-β-ᴅ-GalpNAc-(1→3)-α-ᴅ-Galp and of the Tetrasaccharide α-ʟ-Fucp-(1→2)-β-ᴅ-Galp-(1→3)-β-ᴅ-GalpNAc-(1→3)-α-ᴅ-Galp, Components of a Tumor Antigen Recognized by the Antibody MBr1, Helv. Chim. Acta 1995, 78, 533-538. https://doi.org/10.1002/hlca.19950780302
S. Nishimura, K. Matsuoka, Y. C. Lee, Chemoenzymatic Oligosaccharide Synthesis on a Soluble Polymeric Carrier, Tetrahedron Lett. 1994, 35, 5657-5660. https://doi.org/10.1016/S0040-4039(00)77272-8
H. Mohan, E. Gemma, K. Ruda, S. Oscarson, Efficient Synthesis of Spacer-linked Dimers of N-Acetyllactosamine Using Microvawe-assisted Pyridinium Triflate-promoted Glycosylations with Oxazoline Donors, Synlett. 2003, 1255-1256. DOI: 10.1055/s-2003-40340
J. Xia, C. F. Piskorz, R. D. Locke, E. V. Chandrasekaran, J. L. Alderfer, K. L. Matta, An Efficient Synthesis of Two Monosulfated Trisaccharides with the Galβ1,3GlcNAcβ1,3Galβ-O-Allyl Backbone, Bioorg. Med. Chem. Lett. 1999, 9, 2941-2946. https://doi.org/10.1016/S0960-894X(99)00507-7
J. Kadokawa, S. Kasai, Y. Watanabe, M. Karasu, H. Tagaya, K. Chiba, Synthesis of Natural- and Non-natural-type Aminopolysaccharides: 2-Acetamido-2-deoxy-β-ᴅ-glucopyranan Derivatives by Acid-Catalyzed Polymerization of 2-Methyl(3,6- and 3,4-di-O-benzyl-1,2-dideoxy-α-ᴅ-glucopyrano)-[2,1-d]- 2-oxazolines Involving Stereoregular Glycosylation, Macromolecules, 1997, 30, 8212-8217. https://doi.org/10.1021/ma971117j
A. V. Demchenko, General Aspects of the Glycosidic Bond Formation, in Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; A. V. Demchenko, Ed. WILEY-VCH, 2008, p. 8.
S. Kobayashi, T. Kiyosada, S. Shoda, Synthesis of Artificial Chitin: Irreversible Catalytic Behavior of a Glycosyl Hydrolase through a Transition State Analogue Substrate, J. Am. Chem. Soc. 1996, 118, 13113-13114. https://doi.org/10.1021/ja963011u
S. Shoda, H. Uyama, J. Kadokawa, S. Kimura, S. Kobayashi, Enzymes as Green Catalysts for Precision Macromolecular Synthesis, Chem. Rev. 2016, 116, 2307-2413. https://doi.org/10.1021/acs.chemrev.5b00472
M. Noguchi, T. Tanaka, H. Gyakushi, A. Kobayashi, S. Shoda, Efficient Synthesis of Sugar Oxazolines from Unprotected N-Acetyl-2-amino Sugars by Using Chloroformamidinium Reagent in Water, J. Org. Chem. 2009, 74, 2210-2212. https://doi.org/10.1021/jo8024708
M. A. Kabayama, D. Patterson, The Thermodynamics of Mutarotation of Some Sugars: II. Theoretical Considerations, Can. J. Chem. 1958, 36, 563-573. https://doi.org/10.1139/v58-079
S. Shoda, Development of Chemical
and Chemo-enzymatic Glycosylations, Proc. Jpn Acad. Ser. B. Phys. Biol. Sci. 2017, 93, 125-145. https://doi.org/10.2183/pjab.93.008
J. Kadokawa, M. Mito, S. Takahashi, M. Noguchi, S. Shoda, Direct Conversion of 2-Acetamido-2-deoxysugars to 1,2-Oxazoline Derivatives by Dehydrative Cyclization in Water, Heterocycles 2004, 63, 1531-1535. https://doi.org/10.3987/COM-04-10065
T. Isobe, T. Ishikawa, 2-Chloro-1,3-dimethylimidazolinium Chloride. 1. A Powerful Dehydrating Equivalent to DCC, J. Org. Chem. 1999, 64, 6984-6988. https://doi.org/10.1021/jo990210y
A. Fairbanks, Applications of Shoda's Reagent (DMC) and Analogues for Activation of the Anomeric Centre of Unprotected Carbohydrates, Carbohydr. Res. 2021, 499, 108197. https://doi.org/10.1016/j.carres.2020.108197
M. Noguchi, T. Fujieda, W. C. Huang, M. Ishihara, A. Kobayashi, S. Shoda, A Practical One-Step Synthesis of 1,2-Oxazoline Derivatives from Unprotected Sugars and Its Application to Chemoenzymatic β-N-Acetylglucosaminidation of Disialo-oligosaccharide, Helv. Chim. Acta 2012, 95, 1928-1936. https://doi.org/10.1002/hlca.201200414
S. Shoda, A. Kobayashi, M. Noguchi, Sugar Oxazolines as Directly Preparable Glycosyl Donors from Unprotected N-Acetyl-2-Amino Sugars: Towards One-Pot Chemo-Enzymatic Synthesis of Glycoproteins Catalyzed by N-Acetylglucosaminidases, In Glycoscience: Biology and Medicine; N. Taniguchi, T. Endo, G. W Hart, P. H. Seeberger, C. H. Wong, Eds. Springer Japan, 2015, p. 401. https://doi.org/10.1007/978-4-431-54841-6_41
A. J. Fairbanks, Synthetic and Semi-synthetic Approaches to Unprotected N-Glycan Oxazolines, Beilstein J. Org. Chem. 2018, 14, 416-429. https://doi.org/10.3762/bjoc.14.30
S. Shoda, Enzymatic Glycosylation, In Glycoscience: Chemistry and Chemical Biology I–III; B. O. Fraser-Reid, K. Tatsuta, J. Thiem, Eds. Springer-Verlag, 2001, p. 1465.
J. Thimm, J. Thiem, Enzymatic Glycosylation by Glycohydrolases and Glycosynthases, In Glycoscience: Chemistry and Chemical Biology; J. Thiem, B. O. Fraser-Reid, K. Tatsuta, Eds. Springer-Verlag, 2008, p. 1387.
L. X. Wang, The Amazing Transglycosylation Activity of Endo-β-N-Acetylglucosaminidases, Trends Glycosci. Glycotechnol. 2011, 23, 33-52. https://doi.org/10.4052/tigg.23.33
A. C. Terwisscha van Scheltinga, S. Armand, K. H. Kalk, A. Isogai, B. Henrissat, B. W. Dijkstra, Stereochemistry of Chitin Hydrolysis by a Plant Chitinase/lysozyme and X-ray Structure of a Complex with Allosamidin Evidence for Substrate Assisted Catalysis, Biochemistry 1995, 34, 15619-15623. https://doi.org/10.1021/bi00048a003
M. Hashimoto, Y. Honda, N. Nikaidou, T. Fukamizo, T. Watanabe, Site-Directed Mutagenesis of Asp280 Suggests Substrate-Assisted Catalysis of Chitinae A1 from Bacilluse circulans WL-12, J. Biosci. Bioeng. 2000, 89, 100-102. https://doi.org/10.1016/S1389-1723(00)90031-8
ウィザースらは、保持型グリコシダーゼの酵素活性中心にある求核性アミノ酸を非求核性アミノ酸に置換することにより“グリコシンターゼ”という概念を提唱している。L. F. Mackenzie, Q. Wang, R. A. J. Warren, S. G. Withers, Glycosynthases: Mutant Glycosidases for Oligosaccharide Synthesis, J. Am. Chem. Soc. 1998, 120, 5583-5584. https://doi.org/10.1021/ja980833d
M. Kohri, A. Kobayashi, S. Shoda, Design and Utilization of Chitinases with Low Hydrolytic Acticities, Trends Glycosci. Glycotechnol. 2007, 19, 165-180. https://doi.org/10.4052/tigg.19.165
B. Henrissat, Classification of Chitinases Modules, in Chitin and Chitinases P. Jollès, R. A. A. Murrarelli, Eds. Birkhäuser Verlag, 1999, p. 137.
T. Watanabe, K. Suzuki, W. Oyanagi, K. Ohnishi, H. Tanaka, Gene Ccloning of Chitinase A1 from Bacillus circulans WL-12 Revealed Its Evolutionary Relationship to Serratia Chitinase and to the Type III Homology Units of Fibronectin, J. Biol. Chem. 1990, 265, 15659-15665. https://doi.org/10.1016/S0021-9258(18)55449-1
T. Watanabe, Y. Ariga, U. Sato, T. Toratani, M. Hashimoto, N. Nikaidou, Y. Kezuka, T. Nonaka, J. Sugiyama, Aromatic Residues within the Substrate-binding Cleft of Bacillus circulans Chitinase A1 are Essential for Hydrolysis of Crystalline Chitin, Biochem. J. 2003, 376, 237-244. https://doi.org/10.1042/bj20030419
S. Shoda, M. Fujita, C. Lohavisavapanichi, Y. Misawa, K. Ushizaki, Y. Tawata, M. Kuriyama, M. Kohri, H. Kuwata, T. Watanabe, Efficient Method for the Elongation of the N-Acetylglucosamine Unit by Combined Use of Chitinase and β-Galactosidase, Helv. Chim. Acta 2002, 85, 3919-3936. https://doi.org/10.1002/1522-2675(200211)85:11<3919::AID-HLCA3919>3.0.CO;2-P
M. Kohri, A. Kobayashi, M. Noguchi, S. Kawaida, T. Watanabe, S. Shoda, Stepwise synthesis of chitooligosaccharides through a transition-state analogue substrate catalyzed by mutants of chitinase A1 from Bacillus circulans WL-12, Holzforschung, 2006, 60, 485-491. https://doi.org/10.1515/HF.2006.080
N. Yoshida, T. Tanaka, M. Noguchi, A. Kobayashi, K. Ishikura, T. Ikenuma, H. Seno, T. Watanabe, M. Kohri, S. Shoda, One-pot Chemoenzymatic Route to Chitoheptaose via Specific Transglycosylation of Chitopentaose-Oxazoline on Chitinase-template, Chem. Lett. 2012, 41, 689-690. https://doi.org/10.1246/cl.2012.689
N. Umemoto, N. Saito, M. Noguchi, S. Shoda, T. Ohnuma, T. Watanabe, S. Sakuda, T. Fukamizo, Plant Chitinase Mutants as the Catalysts for Chitooligosaccharide Synthesis Using the Sugar Oxazoline Derivatives, J. Agric. Food Chem. 2022, 70, 12897-12906. https://doi.org/10.1021/acs.jafc.2c04632
M. Fujita, S. Shoda, K. Haneda, T. Inazu, K. Takegawa, K. Yamamoto, A Novel Disaccharide Substrate Having 1,2-Oxazoline Moiety for Detection of Transglycosylating Activity Of Endoglycosidases, Biochim. Biophys. Acta. 2001, 1528, 9-14. https://doi.org/10.1016/S0304-4165(01)00164-7
S. Kadowaki, K. Yamamoto, M. Fujisaki, K. Izumi, T. Tochikura, T. Yokoyama, Purification and Characterization of a Novel Fungal Endo-β-N-acetylglucosaminidase Acting on Complex Oligosaccharides of Glycoproteins, Agri Biol. Chem. 1990, 54, 97-106 https://doi.org/10.1271/bbb1961.54.97
K. Takegawa, M. Nakoshi, S. Iwahara, K. Yamamoto, T. Tochikura, Induction and Purification of Endo-β-N-Acetylglucosaminidase
from Arthrobacter protophormiae Grown in Ovalbumin, Appl. Environ. Microbiol. 1989, 55, 3107-3112. https://doi.org/10.1128/aem.55.12.3107-3112.1989
B. Li, Y. Zeng, S. Hauser, H. Song, L. X. Wang, Highly Efficient Endoglycosidase-Catalyzed Synthesis of Glycopeptides Using Oligosaccharide Oxazolines as Donor Substrates, J. Am. Chem. Soc. 2005, 127, 9692-9693. https://doi.org/10.1021/ja051715a
H. Li, B. Li, H. Song, L. Breydo, I. V. Baskakov, L. X. Wang, Chemoenzymatic Synthesis of HIV-1 V3 Glycopeptides Carrying Two N-Glycans and Effects of Glycosylation on the Peptide Domain, J. Org. Chem. 2005, 70, 9990-9996. https://doi.org/10.1021/jo051729z
T. W. D. F. Rising, T. D. W. Claridge, N. Davies, D. P. Gamblin, J. W. B. Moir, A. J. Fairbanks, Synthesis of N-glycan Oxazolines: Donors for Endohexosaminidase Catalysed Glycosylation, Carbohydr. Res. 2006, 341, 1574-1596. https://doi.org/10.1016/j.carres.2006.03.007
B. Li, H. Song, S. Hauser, L. X. Wang, A Highly Efficient Chemoenzymatic Approach toward Glycoprotein Synthesis, Org. Lett.2006, 8, 3081-3084. https://doi.org/10.1021/ol061056m
M. Umekawa, W. Huang, B. Li, K. Fujita, H. Ashida, L. X. Wang, K. Yamamoto, Mutants of Mucor hiemalis Endo-β-N-acetylglucosaminidase Show Enhanced Transglycosylation and Glycosynthase-like Activities, J. Biol. Chem. 2008, 283, 4469-4479. https://doi.org/10.1074/jbc.M707137200
T. W. D. F. Rising, C.D. Heidecke, J. W. B. Moir, Z. Ling, A. J. Fairbanks, Endohexosaminidasecatalysed Glycosylation with Oxazoline Donors: Fine Tuning of Catalytic Efficiency and Reversibility, Chem. Eur. J. 2008, 14, 6444-6464. https://doi.org/10.1002/chem.200800365
C. D. Heidecke, Z. Ling, N. C. Bruce, J. W. B. Moir, T. B. Parsons, A. J. Fairbanks, Enhanced Glycosylation with Mutants of Endohexosaminidase A (Endo A), Chembiochem. 2008, 9, 2045-2051. https://doi.org/10.1002/cbic.200800214
W. Huang, H. Ochiai, X. Zhang, L. X. Wang, Introducing N-glycans into Natural Products through a Chemoenzymatic Approach, Carbohydr. Res. 2008, 343, 2903-2913. https://doi.org/10.1016/j.carres.2008.08.033
T. B. Parsons, J. W. B. Moir, A. J. Fairbanks, Synthesis of a Truncated Bi-Antennary Complex-Type N-Glycan Oxazoline; Glycosylation Catalysed by
the Endohexosaminidases Endo A and Endo M, Org. Biomol. Chem. 2009, 7, 3128-3140. https://doi.org/10.1039/B907273J
W. Huang, C. Li, B. Li, M. Umekawa, K. Yamamoto, X. Zhang, L.X. Wang, Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins
Carrying Intact Natural N-Glycans, J. Am. Chem. Soc. 2009, 131, 2214-2223. https://doi.org/10.1021/ja8074677
M. Umekawa, C. Li, T. Higashiyama, W. Huang, H. Ashida, K. Yamamoto, L. X. Wang, Efficient Glycosynthase Mutant Derived from Mucor hiemalis Endo-β-N-acetylglucosaminidase Capable of Transferring Oligosaccharide from Both Sugar Oxazoline and Natural N-Glycan, J. Biol. Chem. 2010, 285, 511-521. https://doi.org/10.1074/jbc.M109.059832
M. Umekawa, T. Higashiyama, Y. Koga, T. Tanaka, M. Noguchi, A. Kobayashi, S. Shoda, W. Huang, L. X. Wang, H. Ashida, K. Yamamoto, Efficient Transfer of Sialo-Oligosaccharide onto Proteins by Combined Use of a Glycosynthase-Like Mutant of MucorHiemalis Endoglycosidase
and Synthetic Sialo-Complex-Type Sugar Oxazoline. Biochim. Biophys. Acta. 2010, 1800, 1203-1209. https://doi.org/10.1016/j.bbagen.2010.07.003
W. Huang, Q. Yang, M. Umekawa, K. Yamamoto, L. X. Wang, Arthrobacter Endo-β-N-Acetylglucosaminidase Shows Transglycosylation Activity on Complex-Type N-Glycan Oxazolines: One-Pot Conversion of Ribonuclease B to Sialylated Ribonuclease C, ChemBioChem. 2010, 11, 1350-1355. https://doi.org/10.1002/cbic.201000242
M. N. Amin, W. Huang, R. M. Mizanur, L. X. Wang, Convergent Synthesis of Homogeneous Glc1Man9GlcNAc2-Protein
and Derivatives as Ligands of Molecular Chaperones in Protein Quality Control, J. Am. Chem. Soc. 2011, 133, 14404-14417. https://doi.org/10.1021/ja204831z
G. Zou, H. Ochiai, W. Huang, Q. Yang, C. Li, L. X. Wang, Chemoenzymatic Synthesis and Fcγ Receptor Binding of Homogeneous Glycoforms of Antibody Fc Domain. Presence of a Bisecting Sugar Moiety Enhances the Affinity of Fc to FcγIIIa Receptor, J. Am. Chem. Soc. 2011, 133, 18975-18991. https://doi.org/10.1021/ja208390n
J. J. Goodfellow, K. Baruah, K. Yamamoto, C. Bonomelli, B. Krishna, D. J. Harvey, M. Crispin, C. N. Scanlan, B. G. Davis, An Endoglycosidase with Alternative Glycan Specificity Allows Broadened Glycoprotein Remodelling, J. Am. Chem. Soc. 2012, 134, 8030-8033. https://doi.org/10.1021/ja301334b
W. Huang, J. Giddens, S. Q. Fan, C. Toonstra, L. X. Wang, Chemoenzymatic Glycoengineering of Intact IgG Antibodies for Gain of Functions, J. Am. Chem. Soc. 2012, 134, 12308-12318. https://doi.org/10.1021/ja3051266
S. Q. Fan, W. Huang, L. X. Wang, Remarkable Transglycosylation Activity of Glycosynthase Mutants of Endo-D, an Endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae, J. Biol. Chem. 2012, 287, 11272-11281. https://doi.org/10.1074/jbc.M112.340497
H. Hojo, H. Tanaka, M. Hagiwara, Y. Asahina, A. Ueki, H. Katayama, Y. Nakahara, A. Yoneshige, J. Matsuda, Y. Ito, Y. Nakahara, Chemoenzymatic Synthesis of Hydrophobic Glycoprotein: Synthesis of Saposin C Carrying Complex-Type Carbohydrate, J. Org. Chem. 2012, 77, 9437-9446. https://doi.org/10.1021/jo3010155
Y. Asahina, S. Kamitori, T. Takao, N. Nishi, H. Hojo, Chemoenzymatic Synthesis of the Immunoglobulin Domain of Tim-3 Carrying a Complex-Type N-Glycan by Using a One-pot Ligation, Angew. Chem. Int. Ed. 2013, 52, 9733-9737. https://doi.org/10.1002/anie.201303073
Y. Asahina, M. Kanda, A. Suzuki, H. Katayama, Y. Nakahara, H. Hojo, Fast Preparation of an N-Acetylglucosaminylated Peptide Segment for the Chemoenzymatic Synthesis of a Glycoprotein, Org. Biomol. Chem. 2013, 11, 7199-7207. https://doi.org/10.1039/C3OB41565A
Y. Tomabechi, G. Krippner, P. M. Rendle, M. A. Squire, A. J. Fairbanks, Glycosylation of Pramlintide: Synthetic Glycopeptides that Display In Vitro and In Vivo Activities as Amylin Receptor Agonists, Chem. Eur. J. 2013, 19, 15084-15088. https://doi.org/10.1002/chem.201303303
Y. Tomabechi, M. A. Squire, A. J. Fairbanks, Endo-β-N-Acetylglucosaminidase Catalysed Glycosylation: Tolerance of Enzymes to Structural Variation of the Glycosyl Amino Acid Acceptor, Org. Biomol. Chem. 2014, 12, 942-955. https://doi.org/10.1039/C3OB42104J
R. Kowalczyk, M. A. Brimble, Y. Tomabechi, A. J. Faribanks, M. Fletcher, D. L. Hay, Convergent Chemoenzymatic Synthesis of a Library of Glycosylated Analogues of Pramlintide: Structure–Activity Relationships for Amylin Receptor Agonism, Org. Biomol. Chem. 2014, 12, 8142-8151. https://doi.org/10.1039/C4OB01208A
M. Kurogochi, M. Mori, K. Osumi, M. Tojino, S. Sugawara, S. Takashima, Y. Hirose, W. Tsukimura, M. Mizuno, J. Amano, A. Matsuda, M. Tomita, A. Takayanagi, S. Shoda, T. Shirai, Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable
Antibody-Dependent Cellular Cytotoxicity Activities, PLoS One. 2015, 10,
e0132848. https://doi.org/10.1371/journal.pone.0132848
C. W. Lin, M. H. Tsai, S. T. Li, T. I. Tsai, K. C. Chu, Y. C. Liu, M. Y. Lai, C. Y. Wu, Y. C. Tseng, S. S. Shivatare, C. H. Wang, P. Chao, S. Y. Wang, H. W. Shih, Y. F. Zeng, T. H. You, J. Y. Liao, Y. C. Tu, Y. S. Lin, H. Y. Chuang, C. L. Chen, C. S. Tsai, C. C. Huang, N. H. Lin, C. Ma, C. Y. Wu, C. H. Wong, A Common Glycan Structure on Immunoglobulin G for Enhancement of Effector Functions, Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1513456112
F. Tang, Y. Yang, Y. Tang, S. Tang, L. Yang, B. Sun, B. Jiang, J. Dong, H. Liu, M. Huang, M. Y. Geng, W. Huang, One-pot N-Glycosylation Remodeling of IgG with Non-natural Sialylglycopeptides Enables Glycosite-specific and Dual-Payload Antibody-Drug Conjugates, Org. Biomol. Chem. 2016,14, 9501-9518. https://doi.org/10.1039/C6OB01751G
Y. Higuchi, Y. Eshima, Y. Huang, T. Kinoshita, W. Sumiyoshi, S. Nakakita, K. Takegawa, Highly Efficient Transglycosylation of Sialo-Complex-Type Oligosaccharide Using Coprinopsis cinerea Endoglycosidase and Sugar Oxazoline, Biotechnol. Lett. 2017, 39, 157-162. https://doi.org/10.1007/s10529-016-2230-0
K. Hammura, A. Ishikawa, R. Kumar H. V., R. Miyoshi, Y. Yokoi, M. Tanaka, H. Hinou, S. Nishimura, Synthetic Glycopeptides Allow for the Quantitation of Scarce Nonfucosylated IgG Fc N-Glycans of Therapeutic Antibody, ACS Med. Chem. Lett. 2018, 9, 889-894. https://doi.org/10.1021/acsmedchemlett.8b00127
M. Iwamoto, T. Yamaguchi, Y. Sekiguchi, S. Oishi, T. Shiiki, M. Soma, K. Nakamura, M. Yoshida, H. Chaya, Y. Mori, R. Miyauchi, J. Hasegawa, T. Nagayama, T. Honda, Pharmacokinetic and Pharmacodynamic Profiles of Glyco-Modified Atrial Natriuretic Peptide Derivatives Synthesized Using Chemo-enzymatic Synthesis Approaches, Bioconjug. Chem. 2018, 29, 2829-2837. https://doi.org/10.1021/acs.bioconjchem.8b00427
K. Haneda, T. Oishi, H. Kimura, T. Inazu, Development of a Microbioreactor for Glycoconjugate Synthesis, Bioorg. Med. Chem. 2018, 26, 2092-2098. https://doi.org/10.1016/j.bmc.2018.03.011
S. Manabe, Y. Yamaguchi, K. Matsumoto, H. Fuchigami, T. Kawase, K. Hirose, A. Mitani, W. Sumiyoshi, T. Kinoshita, J. Abe, M. Yasunaga, Y. Matsumura, Y. Ito, Characterization of Antibody Products Obtained through Enzymatic and Nonenzymatic Glycosylation Reactions with a Glycan Oxazoline and Preparation of a Homogeneous Antibody–Drug Conjugate via Fc N-Glycan, Bioconjug. Chem. 2019, 30, 1343-1355. https://doi.org/10.1021/acs.bioconjchem.9b00132
H. J. Lo, L. Krasnova, S. Dey, T. Cheng, H. Liu, T. I. Tsai, K. B. Wu, C. Y. Wu, C. H. Wong, Synthesis of Sialidase-Resistant Oligosaccharide and Antibody Glycoform Containing
α2,6-Linked 3Fax-Neu5Ac, J. Am. Chem. Soc. 2019, 141, 6484-6488. https://doi.org/10.1021/jacs.9b01991
K. Goto, M. Kurogochi, S. Takashima, M. Mori, A. Matsuda, M. Mizuno, Site-specific Protein PEGylation Catalyzed by Endo-β-N-acetylglucosaminidase, Tetrahedron Lett. 2020, 61, 151475. https://doi.org/10.1016/j.tetlet.2019.151475
C. Ou, C. Li, R. Zhang, Q. Yang, G. Zong, Y. Dai, R. L. Francis, S. Bournazos, J. V. Ravetch, L. X. Wang, One-Pot Conversion of Free Sialoglycans to Functionalized Glycan Oxazolines and Efficient Synthesis of Homogeneous Antibody–Drug Conjugates through Site-Specific Chemoenzymatic Glycan Remodeling, Bioconjug. Chem. 2021, 32,1888-1897. https://doi.org/10.1021/acs.bioconjchem.1c00314
X. Zhang, C. Ou, H. Liu, S. Kiran Prabhu, C. Li, Q. Yang, L. X. Wang, General and Robust Chemoenzymatic Method for Glycan-Mediated Site-Specific Labeling and Conjugation of Antibodies: Facile Synthesis of Homogeneous Antibody–Drug Conjugates. ACS Chem. Biol. 2021, 16, 2502-2514. https://doi.org/10.1021/acschembio.1c00597
X. Zhang, H. Liu, J. He, C. Ou, T. C. Donahue, M. M. Muthana, L. Su, L. X. Wang, Site-Specific Chemoenzymatic Conjugation of High-Affinity M6P Glycan Ligands to Antibodies
for Targeted Protein Degradation, ACS Chem. Biol. 2022, 17, 3013-3023. https://doi.org/10.1021/acschembio.1c00751
A. J. Fairbanks, The ENGases: Versatile Biocatalysts for the Production of Homogeneous N-Linked Glycopeptides and Glycoproteins, Chem. Soc. Rev. 2017, 46, 5128-5146. https://doi.org/10.1039/C6CS00897F
A. Ivanova, F. Falcioni, Challenges and Opportunities for the Large-Scale Chemoenzymatic Glycoengineering of Therapeutic N-Glycosylated Monoclonal Antibodies, Front. Catal. 2022, 1, 810779. https://doi.org/10.3389/fctls.2021.810779
X. Qiu, A. J. Fairbanks, Scope of the DMC Mediated Glycosylation of Unprotected Sugars with Phenols in Aqueous Solution, Org. Biomol. Chem. 2020, 18, 7355-7365. https://doi.org/10.1039/D0OB01727B
X. Qiu, A. J. Fairbanks, Direct Synthesis of para-Nitrophenyl Glycosides from Reducing Sugars in Water, Org. Lett. 2020, 22, 2490-2493. https://doi.org/10.1021/acs.orglett.0c00728
X. Qiu, A. L. Garden, A. J. Fairbanks, Protecting Group Free Glycosylation: One-Pot Stereocontrolled Access to 1,2-trans Glycosides and (1→6)-linked Disaccharides of 2-acetamido Sugars, Chem. Sci. 2022, 13, 4122-4130. https://doi.org/10.1039/D2SC00222A
Y. Hamaya, N. Komura, A. Imamura, H. Ishida, H. Ando, H. Tanaka, Protecting-group- and Microwave-Free Synthesis of β-glycosyl Esters and Aryl β-Glycosides of N-acetyl-D-glucosamine, Bioorg. Med. Chem. 2022, 67, 116852. https://doi.org/10.1016/j.bmc.2022.116852
M. Suda, W. Sumiyoshi, T. Kinoshita, S. Ohno, Reaction of Sugar Oxazolines with Primary Amines, Tetrahedron Lett. 2016, 57, 5446-5448. https://doi.org/10.1016/j.tetlet.2016.10.074
N. Wang, A. Seko, S. Daikoku, O. Kanie, Y. Takeda, Y. Ito, Non-enzymatic Reaction of Glycosyl Oxazoline with Peptides, Carbohydr. Res. 2016, 436, 31-35. https://doi.org/10.1016/j.carres.2016.11.002
S. Shoda, Recyclability of Glycan, In Glycoscience:Basic Science to Applications; N. Taniguchi, T. Endo, J. Hirabayashi, S. Nishihara, K. Kadomatsu, K. Akiyoshi, K. F. Aoki-Kinoshita Eds. Springer, 2019, p. 339.