氏名:Alexei V. Demchenko
Alexei V. Demchenko教授は、ロシアのメンデレーエフ化学技術大学で化学工学の修士号を取得(1988年)した後、モスクワのゼリンスキー有機化学研究所の故Kochetkov教授の研究室に加わった。1993年、グリコシル化のためのチオシアン酸法の開発でロシア科学アカデミーから有機化学の博士号を授与された。Kochetkov教授のもとで2年間ポスドクを務めた後、BBSRC博士研究員としてバーミンガム大学(英国)のBoons教授のグループに参加。1998年、ジョージア大学 複合糖質研究センター(米国)にリサーチ・アソシエイトとして移籍。2001年、ミズーリ大学セントルイス校に助教として着任し、2007年に准教授、2011年に教授に昇進した。2014年には、化学・生化学のキュレーター特別教授に任命された。2021年、セントルイス大学の教授兼学科長に就任した。
訳者:藤川 紘樹
藤川 紘樹は、2005年に岐阜大学農学部を卒業後、岐阜大学大学院連合農学研究科に進学し、木曽真先生、石田秀治先生、安藤弘宗先生の指導の下、2010年に博士(農学)の学位を取得した。2010–2012年には、米ミズーリ大学セントルイス校のAlexei V. Demchenko先生に師事し、博士研究員として2年間の研鑽を積んだ。その後、2012-2015年には、JST ERATO 伊藤グライコトリロジープロジェクト(研究総括:伊藤幸成先生)に博士研究員として参画した。2015年から、公益財団法人サントリー生命科学財団 生物有機科学研究所の研究員となり、現在に至る。
References
Stick, R. V.;Williams, S. J. Carbohydrates: the essential molecules of life; Elsevier, 2009.
Abramowitz, L. K.; Hanover, J. A. T cell development and the physiological roleof O-GlcNAc. FEBS letters 2018, 592 (23), 3943-3949.
Nakayama, H.; Nagafuku, M.; Suzuki, A.; Iwabuchi, K.; Inokuchi, J. I. Theregulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBSletters 2018, 592 (23), 3921-3942.
Bertozzi, C. R.; Kiessling, L. L. Chemical glycobiology. Science 2001, 291, 2357-2364.
Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.;Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; et al.Essentials of Glycobiology, 3rd edition. CSH Laboratory Press: Cold SpringHarbor (NY):, 2017.
Cummings, R. D.; Pierce, J. M. The challenge and promise of glycomics. Chem.Biol. 2014, 21, 1-15.
Russo, L.; Cipolla, L. Glycomics: New Challenges and Opportunities inRegenerative Medicine. Chem. Eur. J. 2016, 22 (38),13380-13388.
Darabedian, N.; Yang, B.; Ding, R.; Cutolo, G.; Zaro, B. W.; Woo, C. M.; Pratt,M. R. O-Acetylated Chemical Reporters of Glycosylation Can DisplayMetabolism-Dependent Background Labeling of Proteins but Are Generally ReliableTools for the Identification of Glycoproteins. Front. Chem. 2020, 8, 318, Article.
Ramirez, D. H.; Yang, B.; D’Souza, A. K.; Shen, D.; Woo, C. M. Truncation ofthe TPR domain of OGT alters substrate and glycosite selection. Anal.Bioanal. Chem. 2021, 413 (30), 7385-7399, Article.
Demchenko, A. V. Handbook of chemical glycosylation: advances instereoselectivity and therapeutic relevance. Wiley-VCH: Weinheim, Germany,2008.
Adero, P. O.; Amarasekara, H.; Wen, P.; Bohe, L.; Crich, D. The experimentalevidence in support of glycosylation mechanisms at the SN1-SN2 Interface. Chem.Rev. 2018, 118 (17), 8242-8284.
Andreana, P. R.; Crich, D. Guidelines for O-glycoside formation from firstprinciples. ACS Cent. Sci. 2021, 7 (9), 1454-1462.
Crich, D. En route to the transformation of glycoscience: A chemist'sperspective on internal and external crossroads in glycochemistry. J. Am.Chem. Soc. 2021, 143 (1), 17-34.
Smoot, J. T.; Demchenko, A. V. Oligosaccharide synthesis: from conventionalmethods to modern expeditious strategies. Adv. Carbohydr. Chem. Biochem. 2009, 62, 161-250.
Li, K. J.; Bennett, C. S. New chemical processes to streamline carbohydratesynthesis. Curr. Opin. Chem. Biol. 2022, 70, 102184.
Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. "Armed"and "disarmed" n-pentenyl glycosides in saccharide couplings leadingto oligosaccharides. J. Am. Chem. Soc. 1988, 110,5583-5584.
Fraser-Reid, B.; Udodong, U. E.; Wu, Z. F.; Ottosson, H.; Merritt, J. R.; Rao,C. S.; Roberts, C.; Madsen, R. n-Pentenyl glycosides in organic chemistry: acontemporary example of serendipity. Synlett 1992, (12), 927-942and references therein.
Williams, L. J.; Garbaccio, R. M.; Danishefsky, S. J. Iterative assembly ofglycals and glycal derivatives: the synthesis of glycosylated natural productsand complex oligosaccharides. In Carbohydrates in Chemistry and Biology, Ernst, B., Hart, G. W., Sinay, P. Eds.; Vol. 1; Wiley-VCH, 2000; pp 61-92.
Roy, R.; Andersson, F. O.; Letellier, M. "Active" and"latent" thioglycosyl donors in oligosaccharide synthesis. Application to the synthesis of a-sialosides. Tetrahedron Lett. 1992, 33 (41), 6053-6056.
Boons, G. J.; Isles, S. Vinyl glycosides in oligosaccharide synthesis. Part 1:A new latent-active glycosylation strategy. Tetrahedron Lett. 1994, 35, 3593-3596.
Paulsen, H. Progress in oligosaccharide synthesis through a new orthogonalglycosylation strategy. Angew. Chem. Int. Ed. Engl. 1995, 34 (13/14), 1432-1434.
Kanie, O. Orthogonal strategy in oligosaccharide synthesis. In Carbohydratesin Chemistry and Biology, Ernst, B., Hart, G. W., Sinay, P. Eds.; Vol. 1;Wiley-VCH, 2000; pp 407-426.
Douglas, N. L.; Ley, S. V.; Lucking, U.; Warriner, S. L. Tuning glycosidereactivity: new tool for efficient oligosaccharides synthesis. J. Chem.Soc., Perkin Trans. 1 1998, 51-65.
Green, L. G.; Ley, S. V. Protecting groups: effects on reactivity,glycosylation specificity and coupling efficiency. In Carbohydrates inChemistry and Biology, Ernst, B., Hart, G. W., Sinay, P. Eds.; Vol. 1;Wiley-VCH, 2000; pp 427-448.
Zhang, Z.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H.Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 1999, 121, 734-753.
Ye, X. S.; Wong, C. H. Anomeric reactivity-based one-pot oligosaccharidesynthesis: a rapid route to oligosaccharide libraries. J. Org. Chem. 2000, 65, 2410-2431.
Huang, L.; Wang, Z.; Huang, X. One-pot oligosaccharide synthesis: reactivitytuning by post-synthetic modification of aglycone. Chem. Commun. 2004,1960-1961.
Pornsuriyasak, P.; Gangadharmath, U. B.; Rath, N. P.; Demchenko, A. V. A novelstrategy for oligosaccharide synthesis via temporarily deactivated S-thiazolylglycosides as glycosyl acceptors. Org. Lett. 2004, 6,4515-4518.
Pornsuriyasak, P.; Rath, N. P.; Demchenko, A. V. 4-(Pyridin-2-yl)thiazol-2-ylthioglycosides as bidentate ligands for oligosaccharide synthesis via temporarydeactivation. Chem. Commun. 2008, 5633-5635.
Smoot, J. T.; Pornsuriyasak, P.; Demchenko, A. V. Development of an armingparticipating group for stereoselective glycosylation and chemoselectiveoligosaccharide synthesis. Angew. Chem. Int. Ed. 2005, 44,7123-7126.
Kamat, M. N.; Demchenko, A. V. Revisiting the armed-disarmed concept rationale:chemoselective activation of the S-benzoxazolyl glycosides in oligosaccharidesynthesis. Org. Lett. 2005, 7, 3215-3218.
Mydock, L. K.; Demchenko, A. V. Superarming the S-benzoxazolyl glycosyl donorsby simple 2-O-benzoyl-3,4,6-tri-O-benzyl protection. Org. Lett. 2008, 10, 2103-2106.
Mydock, L. K.; Demchenko, A. V. Application of the superarmed glycosyl donor tochemoselective oligosaccharide synthesis. Org. Lett. 2008, 10,2107-2110.
Kamkhachorn, T.; Parameswar, A. R.; Demchenko, A. V. Comparison of thearmed/disarmed building blocks of the D-gluco and D-glucosamino series in thecontext of chemoselective oligosaccharide synthesis. Org. Lett. 2010, 12 3078-3081.
Pornsuriyasak, P.; Ranade, S. C.; Li, A.; Parlato, M. C.; Sims, C. R.; Shulga,O. V.; Stine, K. J.; Demchenko, A. V. STICS: surface-tethered iterativecarbohydrate synthesis. Chem. Commun. 2009, 1834-1836.
Kaeothip, S.; Pornsuriyasak, P.; Rath, N. P.; Demchenko, A. V. Unexpectedorthogonality of S-benzoxazolyl and S-thiazolinyl derivatives: application toexpeditious oligosaccharide assembly. Org. Lett. 2009, 11,799-802.
Hasty, S. J.; Bandara, M. D.; Rath, N. P.; Demchenko, A. V. S-Benzimidazolyl(SBiz) imidates as a platform for oligosaccharide synthesis via active-latent,armed-disarmed, selective and orthogonal activations. J. Org. Chem. 2017, 82, 1904-1911.
Fujikawa, K.; Vijaya Ganesh, N.; Tan, Y. H.; Stine, K. J.; Demchenko, A. V.Reverse orthogonal approach to oligosaccharide synthesis. Chem. Commun. 2011,10602-10604.
Geringer, S. A.; Kashiwagi, G. A.; Demchenko, A. V. Broadening the Scope of theReverse Orthogonal Strategy for Oligosaccharide Synthesis. J. Org. Chem. 2022, 87 (15), 9887-9895.
Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Automated solid-phasesynthesis of oligosaccharides. Science 2001, 291 (5508),1523-1527.
Krock, L.; Esposito, D.; Castagner, B.; Wang, C.-C.; Bindschadler, P.;Seeberger, P. H. Streamlined access to conjugation-ready glycans by automatedsynthesis. Chem. Sci. 2012, 3, 1617-1622.
Volbeda, G. A.; van Mechelen, J.; Meeuwenoord, N.; Overkleeft, H. S.; van derMarel, G. A.; Codee, J. D. C. Cyanopivaloyl Ester in the Automated Solid-PhaseSynthesis of Oligorhamnans. J. Org. Chem. 2017, 82 (24),12992-13002.
Vijaya Ganesh, N.; Fujikawa, K.; Tan, Y. H.; Stine, K. J.; Demchenko, A. V.HPLC-assisted automated oligosaccharide synthesis. Org. Lett. 2012, 14, 3036-3039.
Zhang, J.; Liang, L.; Yang, W.; Ramadan, S.; Baryal, K.; Huo, C. X.; Bernard,J. J.; Liu, J.; Hsieh-Wilson, L.; Zhang, F.; et al. Expedient Synthesis of aLibrary of Heparan Sulfate-Like "Head-to-Tail" Linked Multimers forStructure and Activity Relationship Studies. Angew. Chem. Int. Ed. Engl. 2022, 61 (48), e202209730.
Ramadan, S.; Su, G.; Baryal, K.; Hsieh-Wilson, L. C.; Liu, J.; Huang, X.Automated Solid Phase Assisted Synthesis of a Heparan Sulfate DisaccharideLibrary. Org. Chem. Front. 2022, 9 (11), 2910-2920.
Tanaka, H.; Matoba, N.; Tsukamoto, H.; Takimoto, H.; Yamada, H.; Takahashi, T.Automated parallel synthesis of a protected oligosaccharide library based uponthe structure of dimeric Lewis X by one-pot sequential glycosylation. Synlett 2005, 824-828.
Machida, K.; Hirose, Y.; Fuse, S.; Sugawara, T.; Takahashi, T. Development andapplication of a solution-phase automated synthesizer, 'ChemKonzert'. Chem.Pharm. Bull. 2010, 58, 87-93.
Jaipuri, F. A.; Pohl, N. L. Toward solution-phase automated iterativesynthesis: fluorous-tag assisted solution-phase synthesis of linear andbranched mannose oligomers. Org. Biomol. Chem. 2008, 6,2686-2691.
Kern, M. K.; Pohl, N. L. B. Automated Solution-Phase Synthesis of S-Glycosidesfor the Production of Oligomannopyranoside Derivatives. Org. Lett. 2020, 22, 4156–4159.
Nokami, T.; Hayashi, R.; Saigusa, Y.; Shimizu, A.; Liu, C.-Y.; Mong, K.-K. T.;Yoshida, J.-i. Automated solution-phase synthesis of oligosaccharides viaiterative electrochemical assembly of thioglycosides. Org. Lett. 2013, 15, 4520-4523.
Nokami, T.; Isoda, Y.; Sasaki, N.; Takaiso, A.; Hayase, S.; Itoh, T.; Hayashi,R.; Shimizu, A.; Yoshida, J.-i. Automated electrochemical assembly of theprotected potential TMG-chitotriomycin precursor based on rational optimizationof the carbohydrate building block Org. Lett. 2015, 17,1525−1528.
Shibuya, A.; Nokami, T. Electrochemical Assembly for Synthesis of Middle-SizedOrganic Molecules. Chem. Record 2021, 21, 2389–2396.
Yao, W.; Xiong, D.-C.; Yang, Y.; Geng, C.; Cong, Z.; Li, F.; Li, B.-H.; Qin,X.; Wang, L.-N.; Xue, W.-Y.; et al. Automated solution-phase multiplicativesynthesis of complex glycans up to a 1,080-mer. Nat. Synth. 2022, 1 (11), 854-863.
Sears, P.; Wong, C. H. Toward automated synthesis of oligosaccharides andglycoproteins. Science 2001, 291 (5512), 2344-2350.
Hsu, C. H.; Hung, S. C.; Wu, C. Y.; Wong, C. H. Toward automatedoligosaccharide synthesis. Angew. Chem. Int. Ed. 2011, 50,11872-11923.
Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A.J.; Chen, X. A sialyltransferase mutant with decreased donor hydrolysis andreduced sialidase activities for directly sialylating Lewis(x). ACS Chem.Biol. 2012, 7, 1232-1240.
Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekan, H.; Chen,X. Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuousUDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem.Commun. 2012, 48, 2728-2730.
Li, L.; Liu, Y.; Ma, C.; Qu, J.; Calderon, A. D.; Wu, B.; Wei, N.; Wang, X.;Guo, Y.; Xiao, Z.; et al. Efficient chemoenzymatic synthesis of an N-glycanisomer library. Chem. Sci. 2015, 6, 5652–5661.
Zhang, J.; Chen, C.; Gadi, M. R.; Gibbons, C.; Guo, Y.; Cao, X.; Edmunds, G.;Wang, S.; Liu, D.; Yu, J.; et al. Machine-Driven Enzymatic OligosaccharideSynthesis by Using a Peptide Synthesizer. Angew. Chem. Int. Ed. Engl. 2018, 57 (51), 16638-16642.
Li, T.; Liu, L.; Wei, N.; Yang, J.-Y.; Chapla, D. G.; Moremen, K. W.; Boons,G.-J. An automated platform for the enzyme-mediated assembly of complexoligosaccharides. Nature Chem. 2019, 11 (3), 229-236.
Pistorio, S. G.; Nigudkar, S. S.; Stine, K. J.; Demchenko, A. V. HPLC-assistedautomated oligosaccharide synthesis: the implementation of the autosampler as amode of the reagent delivery. J. Org. Chem. 2016, 81,8796-8805.
Pistorio, S. G.; Geringer, S. A.; Stine, K. J.; Demchenko, A. V. Manual andautomated syntheses of the N-linked glycoprotein core glycans. J. Org. Chem. 2019, 84, 6576-6588.
Panza, M.; Stine, K. J.; Demchenko, A. V. HPLC-assisted automatedoligosaccharide synthesis: the implementation of the two-way split valve as amode of complete automation. Chem. Commun. 2020, 56,1333-1336.
Panza, M.; Neupane, D.; Stine, K. J.; Demchenko, A. V. The development of adedicated polymer support for the solid-phase oligosaccharide synthesis. Chem.Commun. 2020, 56 (72), 10568-10571.
Escopy, S.; Singh, Y.; Stine, K. J.; Demchenko, A. V. HPLC-Based AutomatedSynthesis of Glycans in Solution. Chem. Eur. J. 2022, 28 (39), e202201180.
Kashiwagi, G. A.;Petrosilli, L.; Escopy, S.; Lay, L.; Stine, K. J.; Meo, C. D.; Demchenko, A. V.HPLC-based automated synthesis and purification of carbohydrates. Chem. Eur.J. 2024, 30, e202401214.