Suzuki, T. et al. Genome-wide CRISPR screen for HSV-1 host factors reveals PAPSS1 contributes to heparan sulfate synthesis. Commun Biol5, 694 (2022). https://doi.org/10.1038/s42003-022-03581-9
WuDunn, D. Spear, P. G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol63, 52-58 (1989). https://doi.org/10.1128/JVI.63.1.52-58.1989
Spear, P. G., Shieh, M. T., Herold, B. C., WuDunn, D. Koshy, T. I. Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv Exp Med Biol313, 341-353 (1992). https://doi.org/10.1007/978-1-4899-2444-5_33
Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. Spear, P. G. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science280, 1618-1620 (1998). https://doi.org/10.1126/science.280.5369.1618
Montgomery, R. I., Warner, M. S., Lum, B. J. Spear, P. G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell87, 427-436 (1996). https://doi.org/10.1016/s0092-8674(00)81363-x
Tyagi, M., Rusnati, M., Presta, M. Giacca, M. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem276, 3254-3261 (2001). https://doi.org/10.1074/jbc.M006701200
Schulze, A., Gripon, P. Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology46, 1759-1768 (2007). https://doi.org/10.1002/hep.21896
Chen, Y. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med3, 866-871 (1997). https://doi.org/10.1038/nm0897-866
Giroglou, T., Florin, L., Schafer, F., Streeck, R. E. Sapp, M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol75, 1565-1570 (2001). https://doi.org/10.1128/JVI.75.3.1565-1570.2001
Wang, R. et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell184, 106-119 e114 (2021). https://doi.org/10.1016/j.cell.2020.12.004
Luteijn, R. D. et al. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. J Virol93 (2019). https://doi.org/10.1128/JVI.02160-18
Jae, L. T. et al. Virus entry. Lassa virus entry requires a trigger-induced receptor switch. Science344, 1506-1510 (2014). https://doi.org/10.1126/science.1252480
Trybala, E., Liljeqvist, J. A., Svennerholm, B. Bergstrom, T. Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol74, 9106-9114 (2000). https://doi.org/10.1128/jvi.74.19.9106-9114.2000
Feyzi, E., Saldeen, T., Larsson, E., Lindahl, U. Salmivirta, M. Age-dependent modulation of heparan sulfate structure and function. J Biol Chem273, 13395-13398 (1998). https://doi.org/10.1074/jbc.273.22.13395
Han, X. et al. Structural analysis of urinary glycosaminoglycans from healthy human subjects. Glycobiology30, 143-151 (2020). https://doi.org/10.1093/glycob/cwz088
Ledin, J. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem279, 42732-42741 (2004). https://doi.org/10.1074/jbc.M405382200
Wei, W., Ninonuevo, M. R., Sharma, A., Danan-Leon, L. M. Leary, J. A. A comprehensive compositional analysis of heparin/heparan sulfate-derived disaccharides from human serum. Anal Chem83, 3703-3708 (2011). https://doi.org/10.1021/ac2001077