図 2. セロオリゴ糖の集合体 (a) ナノシート〔文献33より許可を得て改変し掲載 (Copyright 2016 The Society of Polymer Science, Japan)〕
(b) ナノリボン〔文献34より許可を得て改変し掲載 (Copyright 2017 American Chemical Society)
Isogai, A.; Usuda, M. Preparation of Low-Molecular Weight Celluloses Using Phosphoric Acid. Mokuzai Gakkaishi1991, 37 (4), 339–344.
Helbert, W.; Sugiyama, J. High-Resolution Electron Microscopy on Cellulose II and α-Chitin Single Crystals. Cellulose1998, 5 (2), 113–122. https://doi.org/10.1023/A:1009272814665.
Meiland, M.; Liebert, T.; Heinze, T. Tailoring the Degree of Polymerization of Low Molecular Weight Cellulose. Macromol. Mater. Eng.2011, 296 (9), 802–809. https://doi.org/10.1002/mame.201000424.
Tolonen, L. K.; Juvonen, M.; Niemelä, K.; Mikkelson, A.; Tenkanen, M.; Sixta, H. Supercritical Water Treatment for Cello-oligosaccharide Production from Microcrystalline Cellulose. Carbohydr. Res.2015, 401, 16–23. https://doi.org/10.1016/j.carres.2014.10.012.
Buffiere, J.; Ahvenainen, P.; Borrega, M.; Svedström, K.; Sixta, H. Supercritical Water Hydrolysis: A Green Pathway for Producing Low-Molecular-Weight Cellulose. Green Chem.2016, 18 (24), 6516–6525. https://doi.org/10.1039/c6gc02544g.
Buffiere, J.; Abad, N.; Ahvenainen, P.; Dou, J.; Cocero, M. J.; Sixta, H. Tailoring the Structure and Morphology of Low-Molecular-Weight Cellulose Produced during Supercritical Water Hydrolysis. ACS Sustainable Chem. Eng.2018, 6 (12), 16959–16967. https://doi.org/10.1021/acssuschemeng.8b04296.
Benoit, M.; Rodrigues, A.; De Oliveira Vigier, K.; Fourré, E.; Barrault, J.; Tatibouët, J.-M.; Jérôme, F. Combination of Ball-Milling and Non-Thermal Atmospheric Plasma as Physical Treatments for the Saccharification of Microcrystalline Cellulose. Green Chem.2012, 14 (8), 2212–2215. https://doi.org/10.1039/c2gc35710k.
Kadokawa, J. Precision Polysaccharide Synthesis Catalyzed by Enzymes. Chem. Rev.2011, 111 (7), 4308–4345. https://doi.org/10.1021/cr100285v.
Shoda, S.; Uyama, H.; Kadokawa, J.; Kimura, S.; Kobayashi, S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem. Rev.2016, 116 (4), 2307–2413. https://doi.org/10.1021/acs.chemrev.5b00472.
Hata, Y.; Serizawa, T. Self-Assembly of Cellulose for Creating Green Materials with Tailor-Made Nanostructures. J. Mater. Chem. B2021, 9 (19), 3944–3966. https://doi.org/10.1039/d1tb00339a.
Kobayashi, S.; Kashiwa, K.; Kawasaki, T.; Shoda, S. Novel Method for Polysaccharide Synthesis Using an Enzyme: The First in vitro Synthesis of Cellulose via a Nonbiosynthetic Path Utilizing Cellulase as Catalyst. J. Am. Chem. Soc.1991, 113 (8), 3079–3084. https://doi.org/10.1021/ja00008a042.
Lee, J. H.; Brown, R. M.; Kuga, S.; Shoda, S.; Kobayashi, S. Assembly of Synthetic Cellulose I. Proc. Natl. Acad. Sci. USA1994, 91, 7425–7429. https://doi.org/10.1073/pnas.91.16.7425.
Serizawa, T.; Fukaya, Y.; Sawada, T. Self-Assembly of Cellulose Oligomers into Nanoribbon Network Structures Based on Kinetic Control of Enzymatic Oligomerization. Langmuir2017, 33 (46), 13415–13422. https://doi.org/10.1021/acs.langmuir.7b03653.
Yataka, Y.; Sawada, T.; Serizawa, T. Enzymatic Synthesis and Post-Functionalization of Two-Dimensional Crystalline Cellulose Oligomers with Surface-Reactive Groups. Chem. Comm.2015, 51 (63), 12525–12528. https://doi.org/10.1039/c5cc04378f.
Yataka, Y.; Sawada, T.; Serizawa, T. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in vitro Enzymatic Reactions. Langmuir2016, 32, 10120–10125. https://doi.org/10.1021/acs.langmuir.6b02679.
Nohara, T.; Sawada, T.; Tanaka, H.; Serizawa, T. Enzymatic Synthesis and Protein Adsorption Properties of Crystalline Nanoribbons Composed of Cellulose Oligomer Derivatives with Primary Amino Groups. J. Biomater. Sci. Polym. Ed.2017, 28 (10–12), 925–938. https://doi.org/10.1080/09205063.2017.1322248.
Sugiura, K.; Saito, M.; Sawada, T.; Tanaka, H.; Serizawa, T. Cellodextrin Phosphorylase-Catalyzed Single-Process Production and Superior Mechanical Properties of Organic-Inorganic Hybrid Hydrogels Composed of Surface-Carboxylated Synthetic Nanocelluloses and Hydroxyapatite. ACS Sustainable Chem. Eng.2022, 10 (40), 13484–13494. https://doi.org/10.1021/acssuschemeng.2c04349.
Nohara, T.; Sawada, T.; Tanaka, H.; Serizawa, T. Enzymatic Synthesis of Oligo(Ethylene Glycol)-Bearing Cellulose Oligomers for in situ Formation of Hydrogels with Crystalline Nanoribbon Network Structures. Langmuir2016, 32 (47), 12520–12526. https://doi.org/10.1021/acs.langmuir.6b01635.
Sugiura, K.; Sawada, T.; Tanaka, H.; Serizawa, T. Enzyme-Catalyzed Propagation of Cello-oligosaccharide Chains from Bifunctional Oligomeric Primers for the Preparation of Block Co-oligomers and Their Crystalline Assemblies. Polym. J.2021, 53 (10), 1133–1143. https://doi.org/10.1038/s41428-021-00513-y.
Wolfrom, M. L.; Dacons, J. C. The Polymer-Homologous Series of Oligosaccharides from Cellulose. J. Am. Chem. Soc.1952, 74 (21), 5331–5333. https://doi.org/10.1021/ja01141a032.
Zhang, Y.-H. P.; Lynd, L. R. Toward an Aggregated Understanding of Enzymatic Hydrolysis of Cellulose: Noncomplexed Cellulase Systems. Biotechnol. Bioeng.2004, 88 (7), 797–824. https://doi.org/10.1002/bit.20282.
Hiraishi, M.; Igarashi, K.; Kimura, S.; Wada, M.; Kitaoka, M.; Samejima, M. Synthesis of Highly Ordered Cellulose II in vitro Using Cellodextrin Phosphorylase. Carbohydr. Res.2009, 344 (18), 2468–2473. https://doi.org/10.1016/j.carres.2009.10.002.
Serizawa, T.; Maeda, T.; Sawada, T. Neutralization-Induced Self-Assembly of Cellulose Oligomers into Antibiofouling Crystalline Nanoribbon Networks in Complex Mixtures. ACS Macro Lett.2020, 9 (3), 301–305. https://doi.org/10.1021/acsmacrolett.9b01008.
Hata, Y.; Kojima, T.; Maeda, T.; Sawada, T.; Serizawa, T. pH-Triggered Self-Assembly of Cellulose Oligomers with Gelatin into a Double-Network Hydrogel. Macromol. Biosci.2020, 20 (9), 2000187. https://doi.org/10.1002/mabi.202000187.
Hanamura, M.; Sawada, T.; Serizawa, T. In-Paper Self-Assembly of Cellulose Oligomers for the Preparation of All-Cellulose Functional Paper. ACS Sustainable Chem. Eng.2021, 9 (16), 5684–5692. https://doi.org/10.1021/acssuschemeng.1c00815.
Bialik, E.; Stenqvist, B.; Fang, Y.; Östlund, Å.; Furó, I.; Lindman, B.; Lund, M.; Bernin, D. Ionization of Cellobiose in Aqueous Alkali and the Mechanism of Cellulose Dissolution. J. Phys. Chem. Lett.2016, 7 (24), 5044–5048. https://doi.org/10.1021/acs.jpclett.6b02346.
Lindman, B.; Medronho, B.; Alves, L.; Costa, C.; Edlund, H.; Norgren, M. The Relevance of Structural Features of Cellulose and Its Interactions to Dissolution, Regeneration, Gelation and Plasticization Phenomena. Phys. Chem. Chem. Phys.2017, 19 (35), 23704–23718. https://doi.org/10.1039/c7cp02409f.
Hata, Y.; Hiruma, S.; Sakurai, Y.; Sugiura, K.; Miyazaki, H.; Serizawa, T.; Nakamura, S. Nanospiked Paper: Microfibrous Cellulose Materials Nanostructured via Partial Hydrolysis and Self-Assembly. Carbohydr. Polym.2023, 300, 120257. https://doi.org/10.1016/j.carbpol.2022.120257.
Serizawa, T.; Kato, M.; Okura, H.; Sawada, T.; Wada, M. Hydrolytic Activities of Artificial Nanocellulose Synthesized via Phosphorylase-Catalyzed Enzymatic Reactions. Polym. J.2016, 48 (4), 539–544. https://doi.org/10.1038/pj.2015.125.
Hata, Y.; Kojima, T.; Koizumi, T.; Okura, H.; Sakai, T.; Sawada, T.; Serizawa, T. Enzymatic Synthesis of Cellulose Oligomer Hydrogels Composed of Crystalline Nanoribbon Networks under Macromolecular Crowding Conditions. ACS Macro Lett.2017, 6 (2), 165–170. https://doi.org/10.1021/acsmacrolett.6b00848.
Hata, Y.; Sawada, T.; Serizawa, T. Effect of Solution Viscosity on the Production of Nanoribbon Network Hydrogels Composed of Enzymatically Synthesized Cellulose Oligomers under Macromolecular Crowding Conditions. Polym. J.2017, 49 (7), 575–581. https://doi.org/10.1038/pj.2017.22.
Hata, Y.; Sawada, T.; Sakai, T.; Serizawa, T. Enzyme-Catalyzed Bottom-Up Synthesis of Mechanically and Physicochemically Stable Cellulose Hydrogels for Spatial Immobilization of Functional Colloidal Particles. Biomacromolecules2018, 19, 1269–1275. https://doi.org/10.1021/acs.biomac.8b00092.
Hata, Y.; Fukaya, Y.; Sawada, T.; Nishiura, M.; Serizawa, T. Biocatalytic Oligomerization-Induced Self-Assembly of Crystalline Cellulose Oligomers into Nanoribbon Networks Assisted by Organic Solvents. Beilstein J. Nanotechnol.2019, 10, 1778–1788. https://doi.org/10.3762/bjnano.10.173.
Hata, Y.; Sawada, T.; Marubayashi, H.; Nojima, S.; Serizawa, T. Temperature-Directed Assembly of Crystalline Cellulose Oligomers into Kinetically Trapped Structures during Biocatalytic Synthesis. Langmuir2019, 35, 7026–7034. https://doi.org/10.1021/acs.langmuir.9b00850.
Hata, Y.; Saito, Y.; Sawada, T.; Matsumoto, H.; Serizawa, T. Assembly of Reduced Graphene Oxides into a Three-Dimensional Porous Structure via Confinement within Robust Cellulose Oligomer Networks. RSC Adv.2019, 9 (66), 38848–38854. https://doi.org/10.1039/c9ra08318a.
Hata, Y.; Serizawa, T. Robust Gels Composed of Self-Assembled Cello-oligosaccharide Networks. Bull. Chem. Soc. Jpn.2021, 94 (9), 2279–2289. https://doi.org/10.1246/bcsj.20210234.
Serizawa, T.; Tanaka, S.; Sawada, T. Control of Parallel versus Antiparallel Molecular Arrangements in Crystalline Assemblies of Alkyl β-Cellulosides. J. Colloid Interface Sci.2021, 601, 505–516. https://doi.org/10.1016/j.jcis.2021.05.117.
Große, S.; Wilke, P.; Börner, H. G. Easy Access to Functional Patternson Cellulose Paper by Combining Laser Printing and Material-Specific Peptide Adsorption. Angew. Chem. Int. Ed.2016, 55 (37), 11266–11270. https://doi.org/10.1002/anie.201601603.
Sun, F.; Wu, K.; Hung, H.-C.; Zhang, P.; Che, X.; Smith, J.; Lin, X.; Li, B.; Jain, P.; Yu, Q.; Jiang, S. Paper Sensor Coated with a Poly(Carboxybetaine)-Multiple DOPA Conjugate via Dip-Coating for Biosensing in Complex Media. Anal. Chem.2017, 89 (20), 10999–11004. https://doi.org/10.1021/acs.analchem.7b02876.
Riccardi, C.; McCormick, S.; Kasi, R.; Kumar, C. A Modular Approach for Interlocking Enzymes in Whatman Paper. Angew. Chem. Int. Ed.2018, 57 (32), 10158–10162. https://doi.org/10.1002/anie.201805074.
Ali, M. M.; Wolfe, M.; Tram, K.; Gu, J.; Filipe, C. D. M.; Li, Y.; Brennan, J. D. A DNAzyme-Based Colorimetric Paper Sensor for Helicobacter Pylori. Angew. Chem. Int. Ed.2019, 58 (29), 9907–9911. https://doi.org/10.1002/anie.201901873.
Bordbar, M. M.; Nguyen, T.-A.; Tran, A. Q.; Bagheri, H. Optoelectronic Nose based on an Origami Paper Sensor for Selective Detection of Pesticide Aerosols. Sci. Rep.2020, 10 (1), 17302. https://doi.org/10.1038/s41598-020-74509-8.
Luo, Z.; Lv, T.; Zhu, K.; Li, Y.; Wang, L.; Gooding, J. J.; Liu, G.; Liu, B. Paper-Based Ratiometric Fluorescence Analytical Devices towards Point-of-Care Testing of Human Serum Albumin. Angew. Chem. Int. Ed.2020, 59 (8), 3131–3136. https://doi.org/10.1002/anie.201915046.