様々な糖鎖構造による糖タンパク質の活性を評価するため、現在までに多くの研究者らによって均一な糖鎖構造を有する糖タンパク質の化学合成が行われてきた6。代表的な合成法の一つがNative chemical ligation(NCL)12を用いた化学合成法である。糖タンパク質の化学合成では、最初にペプチド固相合成法(SPPS)13を用いて、合成した糖鎖アミノ酸誘導体1を、ペプチド鎖へ導入し(Figure 2A)、得られた糖ペプチド2を連続的なNCL反応を用いて他のペプチドセグメント3と連結することで、糖タンパク質全長5を構築する(Figure 2B)。
Nomura, K.; Maki, Y.; Okamoto, R.; Satoh, A.; Kajihara. Y. Glycoprotein Semisynthesis by Chemical Insertion of Glycosyl Asparagine Using a Bifunctional Thioacid-Mediated Strategy. J. Am. Chem. Soc.2021, 143, 10157–10167
Ishigami, A.; Masutomi, H.; Handa, S.; Nakamura, M.; Nakaya, S.; Uchida, Y.; Saito, Y.; Murayama, S.; Jang, B.; Jeon, Y. C.; Choi, E. K.; Kim, Y. S.; Kasahara, Y.; Maruyama, N.; Toda, T. Mass Spectrometric Identification of Citrullination Sites and Immunohistochemical Detection of Citrullinated Glial Fibrillary Acidic Protein in Alzheimer’s Disease Brains. J. Neurosci. Res. 2015, 93, 1664−74.
Ishigami, A.; Ohsawa, T.; Hiratsuka, M.; Taguchi, H.; Kobayashi, S.; Saito, Y.; Murayama, S.; Asaga, H.; Toda, T.; Kimura, N.; Maruyama, N. Abnormal Accumulation of Citrullinated Proteins Catalyzed by Peptidylarginine Deiminase in Hippocampal Extracts from Patients with Alzheimer’s Disease. J. Neurosci. Res. 2005, 80, 120−8.
Nagata, K.; Kawakami, T.; Kurata, Y.; Kimura, Y.; Suzuki, Y.; Nagata, T.; Sakuma, Y.; Miyagi, Y.; Hirano, H. Augmentation of Multiple Protein Kinase Activities Associated with Secondary Imatinib Resistance in Gastrointestinal Stromal Tumors as Revealed by Quantitative Phosphoproteome Analysis. J. Proteomics2015, 115, 132−142.
Okayama, A.; Miyagi, Y.; Oshita, F.; Ito, H.; Nakayama, H.; Nishi, M.; Kurata, Y.; Kimura, Y.; Ryo, A.; Hirano, H. Identification of Tyrosine-Phosphorylated Proteins Upregulated during Epithelial-Mesenchymal Transition Induced with TGF-β. J. Proteome Res. 2015, 14, 4127−36.
Unverzzagt, U.; Kajihara, Y. Recent Advances in the Chemical Synthesis of N-linked Glycoproteins. Curr. Opin. Chem. Biol. 2018, 46, 130−137.
Wong, C.-H. Protein Glycosylation: New Challenges and Opportunities. J. Org. Chem. 2005, 70, 4219−4225.
Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Glycosylation and the Immune System. Science2001, 291, 2370−6.
Sinclair, A. M.; Elliott, S. Glycoengineering: The Effect of Glycosylation on the Properties of Therapeutic Proteins. J. Pharm. Sci. 2005, 94, 1626−35.
Wolfert, M. A.; Boons, G.-J. Adaptive Immune Activation: Glycosylation Does Matter. Nat. Chem. Biol. 2013, 9, 776−784.
Varki, A. Biological Roles of Glycans. Glycobiology2017, 27, 3−49.
Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Synthesis of Proteins by Native Chemical Ligation. Science1994, 266, 776.
Merrifield, R. B. Solid Phase Peptide Synthesis. II. The Synthesis of Bradykinin. J. Am. Chem. Soc. 1964, 86, 304−305.
Narendra, N.; Thimmalapura, V. M.; Hosamani, B.; Prabhu, G.; Kumar, L. R.; Sureshbabu, V. V. Thioacids - Synthons for Amide Bond Formation and Ligation Reactions: Assembly of Peptides and Peptidomimetics. Org. Biomol. Chem. 2018, 16, 3524−3552.
Okamoto, R.; Haraguchi, T.; Nomura, K.; Maki, Y.; Izumi, M.; Kajihara, Y. Regioselective α-Peptide Bond Formation Through the Oxidation of Amino Thioacids. Biochemistry2019, 58, 1672−1678.
Okamoto, R.; Nomura, K.; Maki, Y.; Kajihara, Y. A Chemoselective Peptide Bond Formation by Amino Thioacid Coupling. Chem. Lett. 2019, 48, 1391−1393.
Liu, C.-F.; Rao, C.; Tam, J. P. Acyl Disulfide-Mediated Intramolecular Acylation for Orthogonal Coupling between Unprotected Peptide Segments. Mechanism and Application. Tetrahedron Lett. 1996, 37, 933−936.
Zhang, X.; Li, F.; Liu, C. F. Synthesis of Histone H3 Proteins by a Thioacid Capture Ligation Strategy. Chem. Commun. 2011, 47, 1746−8.
Murakami, M.; Okamoto, R.; Izumi, M.; Kajihara, Y. Chemical Synthesis of an Erythropoietin Glycoform Containing a Complex-Type Disialyloligosaccharide. Angew. Chem., Int. Ed. 2012, 51, 3567−72.
Miller, M. D.; Hata, S.; De Waal Malefyt, R.; Krangel, M. S. A Novel Polypeptide Secreted by Activated Human T Lymphocytes. J. Immunol. 1989, 143, 2907−16.
Miller, M. D.; Krangel, M. S. The Human Cytokine I-309 is a Monocyte Chemoattractant. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 2950−4.
Yang, Y.-C.; Ciarletta, A. B.; Temple, P. A.; Chung, M. P.; Kovacic, S.; Witek-Giannotti, J. S.; Leary, A. C.; Kriz, R.; Donahue, R. E.; Wong, G. G.; Clark, S. C. Human IL-3 (multi-CSF): Identification by Expression Cloning of a Novel Hematopoietic Growth Factor Related to Murine IL-3. Cell1986, 47, 3−10.
Urdal, D. L.; Price, V.; Sassenfeld, H. M.; Cosman, D.; Gillis, S.; Park, L. S. Molecular Characterization of Colony-Stimulating Factors and Their Receptors: Human Interleukin-3. Ann. N. Y. Acad. Sci. 1989, 554, 167−76.
Schweiger, A.; Stern, D.; Lohman, I. C.; Baldini, M.; Martinez, F. D.; Halonen, M. Differences in Proliferation of the Hematopoietic Cell Line TF-1 and Cytokine Production by Peripheral Blood Leukocytes Induced by 2 Naturally Occurring Forms of Human IL-3. J. Allergy Clin. Immunol. 2001, 107, 505−10.