

- ・グリコシル化反応の基礎
- ・オリゴ糖合成の事例
- ・立体選択的グリコシル化反応の開発
- ・化学合成糖鎖を用いた糖タンパク質品質管理機構の解析

0-グリコシル化反応の反応機構

グリコシル化の位置選択性を制御するには

グリコシル化の立体選択制を制御するには

	優先するグリ	優先するグリコシドの立体			
椐1宍→1平	アノマー効果	隣接基関与	立役の前御		
D-Glc D-Gal D-GlcNAc D-GalNAc	α	β	可能		
D-Man	α	α	困難		
L-Fuc	α	β	可能		
NeuAc	β	なし	困難		

E 1 K)

Dipole Minimization

溶媒は非配位性

高温(室温~50°C程度)で ゆっくり反応させると良い

SEIKEI Univ. (Department of Materials and Life Science)

生成困難なβ-マンノシド結合を形成するには

SEIKEI Univ. (Department of Materials and Life Science)

E 1 K

生成困難なα-シアロシド結合を形成するには

溶媒効果による立体選択的なグリコシル化

Totani, K.; Matsuo, I.; Ito, Y. Bioorg. Med. Chem. Lett. 2004, 14, 2285.

Chemical Formula: C₃₄H₅₈N₂O₂₆ Molecular Weight: 910.82

コア5糖の合成~その1~

SEIKEI Univ. (Department of Materials and Life Science)

E 1 K

コア5糖の合成~その2~

コア5糖の合成~その3~

E I K

コア5糖の合成~その4~

1,2-cis-α-グリコシド形成にアノマー効果は強力ではない?

立体電子効果を用いた1,2-cis-α-グリコシド形成反応の開発

K. Totani et al. RSC Advances 2015, 5, 75918.

Ph 000000000000000000000000000000000000	の の R 供与体	SPh I	MeOTf, N CH ₂ C	/IS4A, Cl ₂	> 0- 0- Ph_0-	Ph O O RO O	O OAc
Но	OAc	ОМР	Entry	R	Temp. (°C)	Yield (%)	α / β
粉	唐受谷体		1	Bn	10	85	82 : 18
CH ₃	Bn		2	TES	0	-	-
H ₃ C H ₃ C		A	3	TBS	0	96	>95 : 5
TES	$H_{3C} \xrightarrow{CH_{3}} H_{3C} \xrightarrow{H_{3}C} Si \xrightarrow{F}$		4	TIPS	0	50	>95 : 5
$ \begin{array}{c} H_{3}C \\ H_{3}C \\ - Si - \xi \\ H_{3}C \\ H_{4$	TBS		×] <i>TBS</i> ∉] <i>TBS</i>	基は高い収率と 効果:立体的	: α-選択性 効果 / 篇	<i>に効果的</i> 霍子的効果?

SEIKEI Univ. (Department of Materials and Life Science)

可能な立体制御モード

溶媒効果を基にした立体制御モードの絞り込み

					~ 0 $\sim Et_20$
Entry	Solvent	Participation	Yield (%)	α / β	
1	CH ₂ Cl ₂	None	96	>95 : 5	HO HO
2	Toluene	None	41	>95 : 5	ното
3	Et ₂ O	β	20	>95 : 5	
4	MeCN	α	21	48 : 52	MeCN
					C C C C C C C C C C C C C C C C C C C

☑ TBS基の立体的なかさ高さは、立体選択性に影響を与えない

SEIKEI Univ. (Department of Materials and Life Science)

α-グルコシル化の立体制御機構

糖受容体に対する一般性

Entry	Doi	nor		Acceptor	Yield (%)	α / β
1	Ph to 001	O OTBS	Ph	HO OAc	96	>95 : 5
2			4-0	BzO BzO BzO BzO BzO OMe	77	93 : 7
3			ہ Ac	ACO OH 2-OH CO OAC	43	92 : 8
4		Disarm	ed ^E	BzO BzO OMe	82	>95 : 5
5		Armo	ed ^B	BnO OH BnO BnO OMe	96	>95 : 5

SEIKEI Univ. (Department of Materials and Life Science)

SEIKE

提唱するグルコシルドナーの実用性

SEIKEI Univ. (Department of Materials and Life Science)

3糖合成(既存のアプローチ)

▲ 3種類の単糖ユニットが必要 【 標的3糖への変換に4工程を要する ▲ 第二段階のグリコシル化が低収率

SEIKEI Univ. (Department of Materials and Life Science)

3糖合成(提唱するアプローチ)

糖タンパク質品質管理機構

E I KE

R. Benyair et al. Int. Rev. Cell Mol. Biol. 2011, 292, 197–280. SEIKEI Univ. (Department of Materials and Life Science)

糖タンパク質品質管理の中心機構 CNX/CRTサイク/

I. Matsuo et al. Tetrahedron 2006, 62, 8262.

SEIKEI Univ. (Department of Materials and Life Science)

糖鎖プロセシング解析に最適な基質は?

K. Totani et al. Angew. Chem. Int. Ed. 2005, 44, 7950.

K. Totani et al. Biochemistry 2009, 48, 2933.

E 1 K

🗙 UGGT の基質認識にはモルテングロビュール様のアグリコンが必要

K. Totani et al. *Angew. Chem. Int. Ed.* 2005, *44*, 7950. K. Totani et al. *Bioorg. Med. Chem.* 2006, *14*, 5220.

SEIKEI Univ. (Department of Materials and Life Science)

CRTの糖鎖特異性 Y. Ito et al. Curr. Opin. Struct. Biol. 2005, 15, 481.

SEIKEI Univ. (Department of Materials and Life Science)

E 1 K)

GIC'ase II の糖鎖特異性 K. Totani et al. J. Biol. Chem. 2006, 281, 31502

Substrate	Κ_m (μΜ) (μ	V _{max} mol/h/mg)
G1M9-MTX	78	7.87
G1M8B-MTX	56	6.78
G1M8C-MTX	93	5.26
G1M7-MTX	102	5.25

EIKE

🔀 B-arm末端 の Man 切断は影響小

🔀 C-arm末端 の Man 切断により 反応効率低下

GIC'ase IIの認識糖残基 K. Totani et al. J. Biol. Chem. 2006, 281, 31502

SEIKEI Univ. (Department of Materials and Life Science)

ΕΙΚ

UGGT の糖鎖特異性

Substrate	<mark>К_т</mark> (µМ)	V _{max} (nmol/h/mg)
M9-MTX	207	32.3
M8B-MTX	197	15.4
M8C-MTX	448	23.8
M7-MTX	46	4.8

EIK

X B-, C-arm末端の Man 切断により 反応効率低下

🔀 Glc-転移には GlcNAc2 が必須

UGGTの認識糖残基

K. Totani et al. Biochemistry 2009, 48, 2933.

SEIKEI Univ. (Department of Materials and Life Science)

UGGT のアグリコン認識

K. Totani et al. Biochemistry 2009, 48, 2933.

SEIKEI Univ. (Department of Materials and Life Science)

CRT, UGGT, Glc'ase II の基質認識

🛛 認識部位を使い分けた巧みな品質管理